
Support of the new VLBA systems at Green Bank

• how its done now

• GBT systems

• alternate plans

• GBT appears to the user as a VLBA antenna

• Integrate new VLBA back end fully into the GBT
system

Goals

Plan zero
The way it works now.

.key file

sched

crd file

Astrid
runs

Python script

GBT Managers
Scan Coordinator
Receiver
LO/IF system
Antenna

Status demon

GBT Status
Database

VLBA Backend

D-Rack

Mark 5 recorder

VxWorks
Station computer

Message MUX

This is the old way things have been done up
to now. The station computer runs the
backend independently of the GBT system.
Both systems use a copy of the “crd” file.

sch file

Weather,
Clock, etc

crd file

vlba2astrid

Astrid script

rcmd

Monitor data
To Socorro

GBT Observing

Observations consist of two parts: configuration and scans.

• configuration phase (all under computer control):
• select the receiver
• set LO frequencies
•Make IF connections
•Set backend modes (channels, sample rate, etc, etc)

• scan phase
• the backend is commanded to start recording data, coordinated with the
antenna tracking the correct source.
• The configuration cannot change during a scan.
• Configurations may change between scans.
•The user may run several data taking scans using the same configuration.

• coordination of the devices is done by a special Manager program called the
Scan Coordinator, which insures that the antenna tracking and the data
recording start and stop together.

Astrid

• The Astrid user interface is a GUI which lets the observer manage and
execute the observing scripts. Each observing script is put into a database
referenced by the project code. A script may be selected and run singly, or
several scripts may be queued up and run successively.

• These scripts are simply Python programs. There is a suite of Python
functions specifically for controlling the telescope in various ways, and for
sending commands to the various devices.

• for VLBA projects, we might imagine that we would add a python function
that ingests the output of “vex2py” and runs it in Astrid. Processes in Astrid
would translate the code and generate commands for the various
Managers, which in turn control the devices, e.g., antenna, LO, backend.

Managers

A GBT Manager is a piece of software which controls a device or a related
group of devices.

• Managers have standard access methods which may be used to control
and monitor the devices. Access is through RPCs from other processes which
may be on any node in the local network.

• Sending commands to a device is effected by setting "parameters" in a
Manager. Monitoring of status and feedback information is done by
connecting to samplers.

• Messages and alerts from a device are sent to a message MUX which may
alert the user or the telescope operator of error conditions.

• To properly integrate any backend into the GBT system, it is beneficial to
create a Manager for that backend.

A VLBA Manager

A Manager for the VLBA back end

• would command the 4x4 switch, the RDBE, and the Mark5 to the correct
modes as specified by the user.

• It would tell the recorder to start and stop recording.
• It would collect GBT status information and multicast it.
• It would listen for messages and alerts from the VLBA back end devices.
• It would provide status information to the GBT operator through the

standard system of sampler displays.

Possibilities for a Manager

There are a couple of methods I can think of for implementing such a
Manager.

a. The control of the 4x4 switch, RDBEs and Mark5s can be done directly by sending
MIB commands and XML commands to the devices. In this scenario, we would not use
the VLBA Executor. (That’s plan A)

b. Alternately, we could use the Executor program but require it to accept commands
through a socket connection, much as the existing VxWorks computer does with its rcmd
system (plan B) The Manager would send commands to the Executor via a socket,
which would respond by sending the appropriate commands to the RDBEs, and Mark5s.

 Plan A
VLBA back end fully integrated into GBT system

.key file

sched

Vex file

vex2py

Python station control file

Astrid
runs

Python script

GBT Managers
Scan Coordinator
Receiver
LO/IF system
Antenna

GBT VLBA Manager

GBT Status
Database

VLBA Devices

4x4

RDBE boards

Mark5 recorders

Message MUX

Monitor msgs

alerts

Monitor msgs
alerts

Listen for alerts and
Selected messages
From VLBA devices Multicast

land

The GBT/VLBA Manager would execute code that commands the
back end devices, i.e., the RDBE, Mark5, and 4x4 switch. MIB and
XML commands would be sent to the device controllers directly.

To do this, we could copy parts of the code that translates Executor
commands into VLBA device commands and use them in the
Manager.

Weather,
Clock, etc

Script translator

Plan B
VLBA backend partially integrated into GBT system

.key file

sched

Vex file

vex2py

Python station control file

Astrid
runs

Python script

GBT Managers
Scan Coordinator
Receiver
LO/IF system
Antenna

GBT VLBA Manager

GBT Status
Database

VLBA Devices

4x4

RDBE boards

Mark5 recorders

Station computer
Executor

Message MUX

Listen for alerts and
Selected messages
From VLBA devices Multicast

Land

Alerts
Monitor msgs

Monitor msgs and alerts

In plan B, Astrid would interpret the python
schedule file, respond to commands that were
meant for the GBT system, and pass other
commands to the VLBA station computer
executor via the Manager, which would in turn
generate commands for the backend devices.

Weather,
Clock, etc

Script translator

Plan C
VLBA backend runs independently

.key file

sched

Vex file

vex2py

Python station control file

Astrid
runs

Python script

GBT Managers
Scan Coordinator
Receiver
LO/IF system
Antenna

Status demon

GBT Status
Database

VLBA Devices

4x4

RDBE boards

Mark5 recorders

Station computer
Executor

Message MUX

Multicast
Land

Alerts
Monitor msgs

Monitor msgs
and alerts

Plan C is the schizophrenic plan, with the GBT
controlled separately from the VLBA back end.
Separate copies of the python schedule script
are run by Astrid and the VLBA executor.

A status demon collects the monitor data from
the GBT system and multicasts it out to the
VLBA monitor system. It may also collect
messages and alerts from the VLBA devices
and send them to the messge MUX..

Weather,
Clock, etc

Script translator

Implementation Plan

1. Initial Implementation (“plan C”)
a. Receiving, parsing, creating, sending multicast messages, alerts,

and monitor data.
b. Translating VLBA control files to Astrid scripts.

2. Approaching full integration (plans “B” and “A”)
 - adapt code from VLBA Executor for use in VLBA Manager.

