Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

# This file was automatically generated by SWIG (http://www.swig.org). 

# Version 2.0.4 

# 

# Do not make changes to this file unless you know what you are doing--modify 

# the SWIG interface file instead. 

 

 

 

from sys import version_info 

if version_info >= (2,6,0): 

    def swig_import_helper(): 

        from os.path import dirname 

        import imp 

        fp = None 

        try: 

            fp, pathname, description = imp.find_module('_atmosphere', [dirname(__file__)]) 

        except ImportError: 

            import _atmosphere 

            return _atmosphere 

        if fp is not None: 

            try: 

                _mod = imp.load_module('_atmosphere', fp, pathname, description) 

            finally: 

                fp.close() 

            return _mod 

    _atmosphere = swig_import_helper() 

    del swig_import_helper 

else: 

    import _atmosphere 

del version_info 

try: 

    _swig_property = property 

except NameError: 

    pass # Python < 2.2 doesn't have 'property'. 

def _swig_setattr_nondynamic(self,class_type,name,value,static=1): 

    if (name == "thisown"): return self.this.own(value) 

    if (name == "this"): 

        if type(value).__name__ == 'SwigPyObject': 

            self.__dict__[name] = value 

            return 

    method = class_type.__swig_setmethods__.get(name,None) 

    if method: return method(self,value) 

    if (not static): 

        self.__dict__[name] = value 

    else: 

        raise AttributeError("You cannot add attributes to %s" % self) 

 

def _swig_setattr(self,class_type,name,value): 

    return _swig_setattr_nondynamic(self,class_type,name,value,0) 

 

def _swig_getattr(self,class_type,name): 

    if (name == "thisown"): return self.this.own() 

    method = class_type.__swig_getmethods__.get(name,None) 

    if method: return method(self) 

    raise AttributeError(name) 

 

def _swig_repr(self): 

    try: strthis = "proxy of " + self.this.__repr__() 

    except: strthis = "" 

    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) 

 

try: 

    _object = object 

    _newclass = 1 

except AttributeError: 

    class _object : pass 

    _newclass = 0 

 

 

class atmosphere(_object): 

    """Proxy of C++ casac::atmosphere class""" 

    __swig_setmethods__ = {} 

    __setattr__ = lambda self, name, value: _swig_setattr(self, atmosphere, name, value) 

    __swig_getmethods__ = {} 

    __getattr__ = lambda self, name: _swig_getattr(self, atmosphere, name) 

    __repr__ = _swig_repr 

    __swig_setmethods__["_altitude_getBasicAtmParms"] = _atmosphere.atmosphere__altitude_getBasicAtmParms_set 

    __swig_getmethods__["_altitude_getBasicAtmParms"] = _atmosphere.atmosphere__altitude_getBasicAtmParms_get 

    if _newclass:_altitude_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__altitude_getBasicAtmParms_get, _atmosphere.atmosphere__altitude_getBasicAtmParms_set) 

    __swig_setmethods__["_temperature_getBasicAtmParms"] = _atmosphere.atmosphere__temperature_getBasicAtmParms_set 

    __swig_getmethods__["_temperature_getBasicAtmParms"] = _atmosphere.atmosphere__temperature_getBasicAtmParms_get 

    if _newclass:_temperature_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__temperature_getBasicAtmParms_get, _atmosphere.atmosphere__temperature_getBasicAtmParms_set) 

    __swig_setmethods__["_pressure_getBasicAtmParms"] = _atmosphere.atmosphere__pressure_getBasicAtmParms_set 

    __swig_getmethods__["_pressure_getBasicAtmParms"] = _atmosphere.atmosphere__pressure_getBasicAtmParms_get 

    if _newclass:_pressure_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__pressure_getBasicAtmParms_get, _atmosphere.atmosphere__pressure_getBasicAtmParms_set) 

    __swig_setmethods__["_maxAltitude_getBasicAtmParms"] = _atmosphere.atmosphere__maxAltitude_getBasicAtmParms_set 

    __swig_getmethods__["_maxAltitude_getBasicAtmParms"] = _atmosphere.atmosphere__maxAltitude_getBasicAtmParms_get 

    if _newclass:_maxAltitude_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__maxAltitude_getBasicAtmParms_get, _atmosphere.atmosphere__maxAltitude_getBasicAtmParms_set) 

    __swig_setmethods__["_humidity_getBasicAtmParms"] = _atmosphere.atmosphere__humidity_getBasicAtmParms_set 

    __swig_getmethods__["_humidity_getBasicAtmParms"] = _atmosphere.atmosphere__humidity_getBasicAtmParms_get 

    if _newclass:_humidity_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__humidity_getBasicAtmParms_get, _atmosphere.atmosphere__humidity_getBasicAtmParms_set) 

    __swig_setmethods__["_dTem_dh_getBasicAtmParms"] = _atmosphere.atmosphere__dTem_dh_getBasicAtmParms_set 

    __swig_getmethods__["_dTem_dh_getBasicAtmParms"] = _atmosphere.atmosphere__dTem_dh_getBasicAtmParms_get 

    if _newclass:_dTem_dh_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__dTem_dh_getBasicAtmParms_get, _atmosphere.atmosphere__dTem_dh_getBasicAtmParms_set) 

    __swig_setmethods__["_dP_getBasicAtmParms"] = _atmosphere.atmosphere__dP_getBasicAtmParms_set 

    __swig_getmethods__["_dP_getBasicAtmParms"] = _atmosphere.atmosphere__dP_getBasicAtmParms_get 

    if _newclass:_dP_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__dP_getBasicAtmParms_get, _atmosphere.atmosphere__dP_getBasicAtmParms_set) 

    __swig_setmethods__["_dPm_getBasicAtmParms"] = _atmosphere.atmosphere__dPm_getBasicAtmParms_set 

    __swig_getmethods__["_dPm_getBasicAtmParms"] = _atmosphere.atmosphere__dPm_getBasicAtmParms_get 

    if _newclass:_dPm_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__dPm_getBasicAtmParms_get, _atmosphere.atmosphere__dPm_getBasicAtmParms_set) 

    __swig_setmethods__["_h0_getBasicAtmParms"] = _atmosphere.atmosphere__h0_getBasicAtmParms_set 

    __swig_getmethods__["_h0_getBasicAtmParms"] = _atmosphere.atmosphere__h0_getBasicAtmParms_get 

    if _newclass:_h0_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__h0_getBasicAtmParms_get, _atmosphere.atmosphere__h0_getBasicAtmParms_set) 

    __swig_setmethods__["_atmType_getBasicAtmParms"] = _atmosphere.atmosphere__atmType_getBasicAtmParms_set 

    __swig_getmethods__["_atmType_getBasicAtmParms"] = _atmosphere.atmosphere__atmType_getBasicAtmParms_get 

    if _newclass:_atmType_getBasicAtmParms = _swig_property(_atmosphere.atmosphere__atmType_getBasicAtmParms_get, _atmosphere.atmosphere__atmType_getBasicAtmParms_set) 

    __swig_setmethods__["_thickness_getProfile"] = _atmosphere.atmosphere__thickness_getProfile_set 

    __swig_getmethods__["_thickness_getProfile"] = _atmosphere.atmosphere__thickness_getProfile_get 

    if _newclass:_thickness_getProfile = _swig_property(_atmosphere.atmosphere__thickness_getProfile_get, _atmosphere.atmosphere__thickness_getProfile_set) 

    __swig_setmethods__["_temperature_getProfile"] = _atmosphere.atmosphere__temperature_getProfile_set 

    __swig_getmethods__["_temperature_getProfile"] = _atmosphere.atmosphere__temperature_getProfile_get 

    if _newclass:_temperature_getProfile = _swig_property(_atmosphere.atmosphere__temperature_getProfile_get, _atmosphere.atmosphere__temperature_getProfile_set) 

    __swig_setmethods__["_watermassdensity_getProfile"] = _atmosphere.atmosphere__watermassdensity_getProfile_set 

    __swig_getmethods__["_watermassdensity_getProfile"] = _atmosphere.atmosphere__watermassdensity_getProfile_get 

    if _newclass:_watermassdensity_getProfile = _swig_property(_atmosphere.atmosphere__watermassdensity_getProfile_get, _atmosphere.atmosphere__watermassdensity_getProfile_set) 

    __swig_setmethods__["_water_getProfile"] = _atmosphere.atmosphere__water_getProfile_set 

    __swig_getmethods__["_water_getProfile"] = _atmosphere.atmosphere__water_getProfile_get 

    if _newclass:_water_getProfile = _swig_property(_atmosphere.atmosphere__water_getProfile_get, _atmosphere.atmosphere__water_getProfile_set) 

    __swig_setmethods__["_pressure_getProfile"] = _atmosphere.atmosphere__pressure_getProfile_set 

    __swig_getmethods__["_pressure_getProfile"] = _atmosphere.atmosphere__pressure_getProfile_get 

    if _newclass:_pressure_getProfile = _swig_property(_atmosphere.atmosphere__pressure_getProfile_get, _atmosphere.atmosphere__pressure_getProfile_set) 

    __swig_setmethods__["_O3_getProfile"] = _atmosphere.atmosphere__O3_getProfile_set 

    __swig_getmethods__["_O3_getProfile"] = _atmosphere.atmosphere__O3_getProfile_get 

    if _newclass:_O3_getProfile = _swig_property(_atmosphere.atmosphere__O3_getProfile_get, _atmosphere.atmosphere__O3_getProfile_set) 

    __swig_setmethods__["_CO_getProfile"] = _atmosphere.atmosphere__CO_getProfile_set 

    __swig_getmethods__["_CO_getProfile"] = _atmosphere.atmosphere__CO_getProfile_get 

    if _newclass:_CO_getProfile = _swig_property(_atmosphere.atmosphere__CO_getProfile_get, _atmosphere.atmosphere__CO_getProfile_set) 

    __swig_setmethods__["_N2O_getProfile"] = _atmosphere.atmosphere__N2O_getProfile_set 

    __swig_getmethods__["_N2O_getProfile"] = _atmosphere.atmosphere__N2O_getProfile_get 

    if _newclass:_N2O_getProfile = _swig_property(_atmosphere.atmosphere__N2O_getProfile_get, _atmosphere.atmosphere__N2O_getProfile_set) 

    __swig_setmethods__["_dryOpacity_getDryOpacitySpec"] = _atmosphere.atmosphere__dryOpacity_getDryOpacitySpec_set 

    __swig_getmethods__["_dryOpacity_getDryOpacitySpec"] = _atmosphere.atmosphere__dryOpacity_getDryOpacitySpec_get 

    if _newclass:_dryOpacity_getDryOpacitySpec = _swig_property(_atmosphere.atmosphere__dryOpacity_getDryOpacitySpec_get, _atmosphere.atmosphere__dryOpacity_getDryOpacitySpec_set) 

    __swig_setmethods__["_wetOpacity_getWetOpacitySpec"] = _atmosphere.atmosphere__wetOpacity_getWetOpacitySpec_set 

    __swig_getmethods__["_wetOpacity_getWetOpacitySpec"] = _atmosphere.atmosphere__wetOpacity_getWetOpacitySpec_get 

    if _newclass:_wetOpacity_getWetOpacitySpec = _swig_property(_atmosphere.atmosphere__wetOpacity_getWetOpacitySpec_get, _atmosphere.atmosphere__wetOpacity_getWetOpacitySpec_set) 

    __swig_setmethods__["_tebbSky_getTebbSkySpec"] = _atmosphere.atmosphere__tebbSky_getTebbSkySpec_set 

    __swig_getmethods__["_tebbSky_getTebbSkySpec"] = _atmosphere.atmosphere__tebbSky_getTebbSkySpec_get 

    if _newclass:_tebbSky_getTebbSkySpec = _swig_property(_atmosphere.atmosphere__tebbSky_getTebbSkySpec_get, _atmosphere.atmosphere__tebbSky_getTebbSkySpec_set) 

    def __init__(self): 

        """__init__(self) -> atmosphere""" 

        this = _atmosphere.new_atmosphere() 

        try: self.this.append(this) 

        except: self.this = this 

    __swig_destroy__ = _atmosphere.delete_atmosphere 

    __del__ = lambda self : None; 

    def getAtmVersion(self): 

        """ 

        getAtmVersion(self) -> string 

 

        Summary 

                Returns the version of ATM library. 

            

 

        Description 

                  

        Returns the version of ATM library implemented to this tool. 

 

        Example: 

                 

 

        at.getAtmVersion() 

        # 'ATM-0_5_0' 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAtmVersion(self) 

 

    def listAtmosphereTypes(self): 

        """ 

        listAtmosphereTypes(self) -> std::vector<(std::string)> 

 

        Summary 

                Returns a list of atmospheric types used by ATM. 

            

 

        Description 

                 

        Returns a list of index numbers and corresponding atmosphere types 

        used by the ATM library. 

 

        Example: 

                 

 

        at.listAtmosphereTypes() 

        # ['1 - TROPICAL', '2 - MIDLATSUMMER', '3 - MIDLATWINTER',  

        #  '4 - SUBARTSUMMER', '5 - SUBARTWINTER'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_listAtmosphereTypes(self) 

 

    def initAtmProfile(self, *args, **kwargs): 

        """ 

        initAtmProfile(self, altitude = Quantity(std::vector<double>(1, 5000.),"m"),  

            temperature = Quantity(std::vector<double>(1, 270.0),"K"),  

            pressure = Quantity(std::vector<double>(1, 560.0),"mbar"),  

            maxAltitude = Quantity(std::vector<double>(1, 48.0),"km"),  

            humidity = 20.0,  

            dTem_dh = Quantity(std::vector<double>(1, -5.6),"K/km"),  

            dP = Quantity(std::vector<double>(1, 10.0),"mbar"),  

            dPm = 1.2,  

            h0 = Quantity(std::vector<double>(1, 2.0),"km"),  

            atmType = 1) -> string 

 

        Summary 

                Set initial atmospheric profile for atmosphere tool 

            

 

        Description 

                 

        An atmospheric profile is composed of 4 quantities as a function of 

        altitude z: 

 

            * the layer thickness 

            * the pressure P 

            * the temperature T and 

            * the gas densities for H2O, O3, CO and N2O. 

 

 

        This method is needed for computing the absorption and phase 

        coefficients, as well as for performing radiative transfer 

        calculations (only layer thickness/T are needed). 

 

        This method builds an atmospheric profile that can be used to calculate 

        absorption and phase coefficients, as well as to perform forward 

        and/or retrieval radiative transfer calculations. It is composed of a 

        set of parameters needed to build a layer thickness/P/T/gas densities 

        densities profile from simple parameters currently available at 

        observatories (from weather stations for example) using functions from 

        the ATM library. The set of input parameters consists of the pressure 

        P, the temperature T and the relative humidity at the ground, the 

        altitude of the site, the tropospheric temperature lapse rate,... The 

        profile is built as: thickness of the considered atmospheric layers 

        above the site, and mean P,T,H2O,O3,CO,N2O in them. The total number 

        of atmospheric layers in the particular profile is also available (a 

        negative value indicates an error).  The zenith column of water vapor 

        can be calculated by simply integrating the H2O profile. 

 

 

        Input Parameters: 

                altitude         Site altitude - Quantity with units of altitude, meter 5000.  

                temperature      Ambient Temperature - Quantity with units of temperature, K 270.0  

                pressure         Ambient pressure - Quantity with units of pressure, mbar 560.0  

                maxAltitude      altitude of the top pf the modelled atmosphere - Quantity with dimension of length, and units of kilometer 48.0  

                humidity         used to guess water (0-100) 20.0  

                dTem_dh          the derivative of temperature with respect to height - Quantity with units of K/km -5.6  

                dP               initial pressure step - Quantity with the units of pressure, mb 10.0  

                dPm              pressure multiplicative factor for steps 1.2  

                h0               scale height for water( exp distribution ) - Quantity with the dimension of length, and units of kilometer 2.0  

                atmType          atmospheric type 1(tropical),2(mid latitude summer),3(mid latitude winter), 4(subarctic summer),5(subarctic winter), dimensionless 1  

                 

        Example: 

                 

 

        tmp = qa.quantity(270.0, 'K') 

        pre = qa.quantity(560.0, 'mbar') 

        hum = 20.0 

        alt = qa.quantity(5000, 'm') 

        h0  = qa.quantity(2.0, 'km') 

        wvl = qa.quantity(-5.6, 'K/km') 

        mxA = qa.quantity(48, 'km') 

        dpr = qa.quantity(10.0, 'mbar') 

        dpm = 1.2 

        att = 1 

        myatm = at.initAtmProfile(alt, tmp, pre, mxA, hum, wvl, dpr, dpm, h0, att) 

        print myatm 

        # BASIC ATMOSPHERIC PARAMETERS TO GENERATE REFERENCE ATMOSPHERIC PROFILE 

        #  

        # Ground temperature T:         270 K 

        # Ground pressure P:            560 mb 

        # Relative humidity rh:         20 % 

        # Scale height h0:              2 km 

        # Pressure step dp:             10 mb 

        # Altitude alti:                5000 m 

        # Attitude top atm profile:     48 km 

        # Pressure step factor:         1.2  

        # Tropospheric lapse rate:      -5.6 K/km 

        # Atmospheric type:             TROPICAL 

        # 

        # Built atmospheric profile with 20 layers. 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_initAtmProfile(self, *args, **kwargs) 

 

    def updateAtmProfile(self, *args, **kwargs): 

        """ 

        updateAtmProfile(self, altitude = Quantity(std::vector<double>(1, 5000.),"m"),  

            temperature = Quantity(std::vector<double>(1, 270.0),"K"),  

            pressure = Quantity(std::vector<double>(1, 560.0),"mbar"),  

            humidity = 20.0,  

            dTem_dh = Quantity(std::vector<double>(1, -5.6),"K/km"),  

            h0 = Quantity(std::vector<double>(1, 2.0),"km")) -> string 

 

        Summary 

                Update basic atmospheric parameters of atmosphere tool 

            

 

        Description 

                 

        This is used to update the {    t atmosphere} tool when basic 

        atmospheric parameters.change. 

 

 

        Input Parameters: 

                altitude         Site altitude - Quantity with units of altitude, meter 5000.  

                temperature      Ambient ground temperature - Quantity with units of temperature, K 270.0  

                pressure         Ambient ground pressure - Quantity with units of pressure, mbar 560.0  

                humidity         Relative humidy used to guess water (0-100) 20.0  

                dTem_dh          Tropospheric Lapse Rate - the derivative of temperature with respect to height - Quantity with units of K/km -5.6  

                h0               scale height for water( exp distribution ) - Quantity with the dimension of length, and units of kilometer 2.0  

                 

        Example: 

                 

 

        new_tmp = qa.quantity(275.0, 'K') 

        print at.updateAtmProfile(alt, new_tmp, pre, hum, wvl, h0) 

        # UPDATED BASIC ATMOSPHERIC PARAMETERS TO GENERATE REFERENCE ATMOSPHERIC PROFILE 

        #   

        # Ground temperature T:         275 K 

        # Ground pressure P:            560 mb 

        # Relative humidity rh:         20 % 

        # Scale height h0:              2 km 

        # Altitude alti:                5000 m 

        # Tropospheric lapse rate:      -5.6 K/km 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_updateAtmProfile(self, *args, **kwargs) 

 

    def getBasicAtmParms(self, *args, **kwargs): 

        """ 

        getBasicAtmParms(self, _altitude = _altitude_getBasicAtmParms, _temperature = _temperature_getBasicAtmParms,  

            _pressure = _pressure_getBasicAtmParms,  

            _maxAltitude = _maxAltitude_getBasicAtmParms,  

            _humidity = _humidity_getBasicAtmParms,  

            _dTem_dh = _dTem_dh_getBasicAtmParms,  

            _dP = _dP_getBasicAtmParms,  

            _dPm = _dPm_getBasicAtmParms, _h0 = _h0_getBasicAtmParms,  

            _atmType = _atmType_getBasicAtmParms) -> string 

 

        Summary 

                Gets the current basic atmospheric parameters of the model. 

            

 

        Output Parameters: 

                _altitude        Site altitude - Quantity with units of altitude, meter  

                _temperature     Ambient ground temperature - Quantity with units of temperature, K  

                _pressure        Ambient pressure - Quantity with units of pressure, mbar  

                _maxAltitude     altitude of the top pf the modelled atmosphere - Quantity with dimension of length, and units of kilometer  

                _humidity        Ground relative humidity used to guess water (0-100)  

                _dTem_dh         Current Tropospheric Lapse Rate (the derivative of temperature with respect to height) - Quantity with units of K/km  

                _dP              initial pressure step - Quantity with the units of pressure, mb  

                _dPm             pressure multiplicative factor for steps  

                _h0              Water vapor scale height ( exp distribution ) - Quantity with the dimension of length, and units of kilometer  

                _atmType         atmospheric type used to describe the behaviour above the tropopause. 1(tropical),2(mid latitude summer),3(mid latitude winter), 4(subarctic summer),5(subarctic winter), dimensionless  

                 

        Example: 

                 

 

        p = at.getBasicAtmParms() 

        # returns a tuple of 

        # 0 - string listing of parameters, 1 - altitude, 2 - temperature, 

        # 3 - pressure, 4 - maxAltitude, 5 - humidity, 6 - dTem_dh, 

        # 7 - dP, 8 - dPm. 9 - h0, and 10 - atmType 

        print 'Atmospheric type:   ', p[10] 

        # Atmospheric type:    TROPICAL 

        print 'Ground temperature: ', p[2]['value'][0], p[2]['unit'] 

        # Ground temperature:  288.16 K 

        print p[0]           # a 'pretty' listing of all the parameters 

        # CURRENT ATMOSPHERIC PARAMETERS OF REFERENCE ATMOSPHERIC PROFILE 

        #   

        # Ground temperature T:         275 K 

        # Ground pressure P:            560 mbar 

        # Relative humidity rh:         20 % 

        # Scale height h0:              2 km 

        # Pressure step dp:             10 mbar 

        # Altitude alti:                5000 m 

        # Attitude top atm profile      48 km 

        # Pressure step factor          1.2  

        # Tropospheric lapse rate       -5.6 K/km 

        # Atmospheric type:             TROPICAL 

        # 

        # Atmospheric profile has 20 layers. 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getBasicAtmParms(self, *args, **kwargs) 

 

    def getNumLayers(self): 

        """ 

        getNumLayers(self) -> int 

 

        Summary 

                Returns the number of layers in the atmospheric profile. 

            

        Example: 

                 

 

        p = at.getProfile() 

        for i in range(at.getNumLayers()): 

                # Print atmospheric profile returned by at.getProfile(): 

                # Layer thickness (idx=1), Temperature (idx=2), 

                # Number density of water vapor(idx=4), and Pressure (idx=5) 

                print p[1]['value'][i], p[2]['value'][i], p[4]['value'][i], p[5]['value'][i] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNumLayers(self) 

 

    def getGroundWH2O(self): 

        """ 

        getGroundWH2O(self) -> Quantity 

 

        Summary 

                get the zenith column of water vapor 

 

        Description 

                 

        Method to get the zenith column  of water vapor. It is computed by 

        simply integrating the H2O profile: 

 

        Example: 

                 

 

        w = at.getGroundWH2O() 

        print 'Guessed water content: ', w['value'][0], w['unit'] 

        # Guessed water content:  2.6529103462750112 mm 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getGroundWH2O(self) 

 

    def getProfile(self, *args, **kwargs): 

        """ 

        getProfile(self, _thickness = _thickness_getProfile, _temperature = _temperature_getProfile,  

            _watermassdensity = _watermassdensity_getProfile,  

            _water = _water_getProfile,  

            _pressure = _pressure_getProfile,  

            _O3 = _O3_getProfile, _CO = _CO_getProfile,  

            _N2O = _N2O_getProfile) -> string 

 

        Summary 

                get atmospheric profile 

 

        Description 

                 

 

        Get the atmospheric profile. 

 

 

 

        Output Parameters: 

                _thickness       thickness of every atmospheric layer - Quantum with a vector value and unit of length, m  

                _temperature     temperature of every atmospheric layer - Quantum with a vector value and unit of temperature, K  

                _watermassdensity        water vapor mass density content of every atmospheric layer - Quantum with a vector value and unit of kg.m-3  

                _water           water vapor content of every atmospheric layer - Quantum with a vector value and unit of m-3  

                _pressure        pressure of every atmospheric layer - Quantum with a vector value and unit of Pascal  

                _O3              O3 of every atmospheric layer - Quantum with a vector value and unit of m-3  

                _CO              CO of every atmospheric layer - Quantum with a vector value and unit of m-3  

                _N2O             N2O of every atmospheric layer - Quantum with a vector value and unit of m-3  

                 

        Example: 

                 

 

        p = at.getProfile() 

        # returns a tuple of 

        # 0 - string listing of layer values, and arrays of layer, 1 - thickness, 

        # 2 - temperature, 3 - watermassdensity, 4 - water (number density), 

        # 5 - pressure, 6 - O3 (number density), 7 - CO, 8 - N2O 

        for i in range(at.getNumLayers()): 

                # Print atmospheric profile returned by at.getProfile(): 

                # Layer thickness (idx=1), Temperature (idx=2), 

                # Number density of water vapor(idx=4), and Pressure (idx=5) 

                print p[1]['value'][i], p[2]['value'][i], p[4]['value'][i],              p[5]['value'][i] 

 

        print p[0]    # 'pretty' listing of all layer parameters 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getProfile(self, *args, **kwargs) 

 

    def initSpectralWindow(self, *args, **kwargs): 

        """ 

        initSpectralWindow(self, nbands = 1, fCenter = Quantity(std::vector<double>(1, 90),"GHz"),  

            fWidth = Quantity(std::vector<double>(1, 0.64),"GHz"),  

            fRes = Quantity(std::vector<double>(1, 0.0),"GHz")) -> int 

 

        Summary 

                initialize spectral window 

 

        Description 

                 

 

        function that defines a spectral window, computes absorption and emmision coefficients for this window, 

        using the above atmospheric parameters. 

 

 

 

        Input Parameters: 

                nbands           number of spectral windows/bands 1  

                fCenter          center frequencies - Quantum with a vector value and unit of frequency, GHz 90  

                fWidth           frequency width of band - Quantum with a vector value and unit of frequency, GHz 0.64  

                fRes             resolution inside band - Quantum with a vector value and unit frequency, GHz. Default is for a single frequency. 0.0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity(88., 'GHz') 

        fW = qa.quantity(0.5, 'GHz') 

        fR = qa.quantity(0.5, 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

 

        nb = 2 

        fC = qa.quantity([88., 90.], 'GHz') 

        fW = qa.quantity([0.5, 0.5], 'GHz') 

        fR = qa.quantity([0.125, 0.125], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_initSpectralWindow(self, *args, **kwargs) 

 

    def addSpectralWindow(self, *args, **kwargs): 

        """ 

        addSpectralWindow(self, fCenter = Quantity(std::vector<double>(1, 350),"GHz"),  

            fWidth = Quantity(std::vector<double>(1, 0.008),"GHz"),  

            fRes = Quantity(std::vector<double>(1, 0.002),"GHz")) -> int 

 

        Summary 

                add a new spectral window 

 

        Description 

                 

 

 

        Add a new spectral window, uniformly sampled, this spectral window 

        having no sideband. 

 

 

 

        Input Parameters: 

                fCenter          frequencies - Quantum with a double value and unit of frequency, GHz 350  

                fWidth           frequency width of band - Quantum with a double value and unit of frequency, GHz 0.008  

                fRes             resolution inside band - Quantum with a double value and unit frequency, GHz 0.002  

                 

        Example: 

                 

 

        fC2 = qa.quantity(350.0, 'GHz') 

        fW2 = qa.quantity(0.008, 'GHz') 

        fR2 = qa.quantity(0.002, 'GHz') 

        nc = at.addSpectralWindow(fC2, fW2, fR2) 

        print 'New spectral window has ', nc, ' channels' 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_addSpectralWindow(self, *args, **kwargs) 

 

    def getNumSpectralWindows(self): 

        """ 

        getNumSpectralWindows(self) -> int 

 

        Summary 

                Get number of spectral windows 

        Example: 

                 

 

        numSpw = at.getNumSpectralWindows() 

        print 'There are ', numSpw, ' spectral windows' 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNumSpectralWindows(self) 

 

    def getNumChan(self, spwid = 0): 

        """ 

        getNumChan(self, spwid = 0) -> int 

 

        Summary 

                return the number of channels of ith band 

 

        Description 

                 

        Return the number of channels of ith band ( passes in as parameter ). 

 

 

        Input Parameters: 

                spwid            Int standing for identifier of bands (0-based) 0  

                 

        Example: 

                 

 

        for spwid in range(at.getNumSpectralWindows()): 

                numCh = at.getNumChan(spwid) 

                print 'Spectral window ', spwid, ' has ', numCh, ' frequency channels' 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNumChan(self, spwid) 

 

    def getRefChan(self, spwid = 0): 

        """ 

        getRefChan(self, spwid = 0) -> int 

 

        Summary 

                Get the reference channel of a given spectral window 

            

 

        Description 

                 

        Return the reference channel of the given spectral window 

 

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        rc = at.getRefChan() 

        print 'Reference channel retrieved: ', rc 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getRefChan(self, spwid) 

 

    def getRefFreq(self, spwid = 0): 

        """ 

        getRefFreq(self, spwid = 0) -> Quantity 

 

        Summary 

                Get the reference frequency of given spectral window 

            

 

        Description 

                 

        Return the reference frequency of the given spectral window 

 

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        rf = at.getRefFreq() 

        print 'Reference frequency retrieved: ', rf['value'][0], rf['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getRefFreq(self, spwid) 

 

    def getChanSep(self, spwid = 0): 

        """ 

        getChanSep(self, spwid = 0) -> Quantity 

 

        Summary 

                Get the channel separation for regularly spaced grid for spectral window 

            

 

        Description 

                 

        Return the channel separation of the given spectral window 

 

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        cs = at.getChanSep() 

        print 'Channel separation retrieved: ', cs['value'][0], cs['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getChanSep(self, spwid) 

 

    def getChanFreq(self, chanNum = 0, spwid = 0): 

        """ 

        getChanFreq(self, chanNum = 0, spwid = 0) -> Quantity 

 

        Summary 

                Get the channel frequency for a given grid point for the specified spectral window. 

            

 

        Description 

                 

              Return the channel frequency for a given grid point for the specified spectral window. 

            

 

        Input Parameters: 

                chanNum          Int standing for channel number (0-based) 0  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

            

        for spwid in range(at.getNumSpectralWindows()): 

                numCh = at.getNumChan(spwid) 

                print 'Spectral window ', spwid, ' has ', numCh, ' frequency channels' 

                for n in range(numCh): 

                        freq = at.getChanFreq(n, spwid) 

                        print 'Channel ', n, ' Frequency:', freq['value'][0], freq['unit'] 

 

             

             

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getChanFreq(self, chanNum, spwid) 

 

    def getSpectralWindow(self, spwid = 0): 

        """ 

        getSpectralWindow(self, spwid = 0) -> Quantity 

 

        Summary 

                Get the spectral grid for the specified spectral window. 

            

 

        Description 

                 

              Return the spectral grid for the specified spectral window. 

            

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

            

        print at.getSpectralWindow()['value'],at.getSpectralWindow()['unit'] 

 

        sg = at.getSpectralWindow() 

        for i in range(len(sg['value'])): 

                print sg['value'][i], sg['unit'] 

 

             

             

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getSpectralWindow(self, spwid) 

 

    def getChanNum(self, *args, **kwargs): 

        """ 

        getChanNum(self, freq, spwid = 0) -> double 

 

        Summary 

                Get the grid position for a given frequency in the specified spectral window. 

            

 

        Description 

                 

              Return the channel number for given frequency in the specified 

              spectral window relative to the reference channel number. 

            

 

        Input Parameters: 

                freq             Frequency  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

            

        # List current spectral window setting of SPW0 

        at.getRefFreq()['value'][0], at.getRefFreq()['unit'] 

        # (90.0, 'GHz') 

        print at.getChanSep()['value'][0], at.getChanSep()['unit'] 

        # 10.0 MHz 

        at.getRefChan() 

        # 32 

 

        # Get grid positions 

        at.getChanNum(qa.quantity(90., 'GHz')) 

        # 0.0 

 

        at.getChanNum(qa.quantity(90., 'GHz'), 0) 

        # 0.0 

 

        at.getChanNum(qa.quantity(90.08, 'GHz'), 0) 

        # 8.0 

 

        at.getChanNum(qa.quantity(89.985, 'GHz'), 0) 

        # -1.5 

 

        at.getChanNum(qa.quantity(89.98,'GHz'), 0) 

        # -2.0 

 

             

             

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getChanNum(self, *args, **kwargs) 

 

    def getBandwidth(self, spwid = 0): 

        """ 

        getBandwidth(self, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get the frequency range encompassing the list of frequency grid points for the specified spectral window. 

            

 

        Description 

                 

        Get the frequency range encompassing the list of frequency grid points for the specified spectral window. 

            

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

            

        print 'Total bandwidth retrieved: ', at.getBandwidth()['value'][0], at.getBandwidth()['unit'] 

 

             

             

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getBandwidth(self, spwid) 

 

    def getMinFreq(self, spwid = 0): 

        """ 

        getMinFreq(self, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get lowest frequency channel for the specified spectral window. 

            

 

        Description 

                 

        Get lowest frequency channel for the specified spectral window. 

            

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

            

        print 'Frequency range: from ', at.getMinFreq()['value'][0], ' to ',      at.getMaxFreq()['value'][0], at.getMinFreq()['unit'] 

 

             

             

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getMinFreq(self, spwid) 

 

    def getMaxFreq(self, spwid = 0): 

        """ 

        getMaxFreq(self, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get highest frequency channel for the specified spectral window. 

            

 

        Description 

                 

        Get highest frequency channel for the specified spectral window. 

            

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

            

        print 'Frequency range: from ', at.getMinFreq()['value'][0], ' to ',      at.getMaxFreq()['value'][0], at.getMaxFreq()['unit'] 

             

             

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getMaxFreq(self, spwid) 

 

    def getDryOpacity(self, *args, **kwargs): 

        """ 

        getDryOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated Dry Opacity along the atmospheric path for channel nc in spectral window swpId 

 

        Description 

                 

 

        Get the integrated Dry Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total Dry Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getDryOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getDryOpacity(self, *args, **kwargs) 

 

    def getDryContOpacity(self, *args, **kwargs): 

        """ 

        getDryContOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated Dry Continuum Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated Dry Continuum Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total Dry Cont Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getDryContOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getDryContOpacity(self, *args, **kwargs) 

 

    def getO2LinesOpacity(self, *args, **kwargs): 

        """ 

        getO2LinesOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated O2 Lines Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated O2 Lines Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total O2 Lines Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getO2LinesOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getO2LinesOpacity(self, *args, **kwargs) 

 

    def getO3LinesOpacity(self, *args, **kwargs): 

        """ 

        getO3LinesOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated O3 Lines Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated O3 Lines Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total O3 Lines Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getO3LinesOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getO3LinesOpacity(self, *args, **kwargs) 

 

    def getCOLinesOpacity(self, *args, **kwargs): 

        """ 

        getCOLinesOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated CO Lines Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated CO Lines Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total CO Lines Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getCOLinesOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getCOLinesOpacity(self, *args, **kwargs) 

 

    def getN2OLinesOpacity(self, *args, **kwargs): 

        """ 

        getN2OLinesOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated N2O Lines Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated N2O Lines Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total N2O Lines Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getN2OLinesOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getN2OLinesOpacity(self, *args, **kwargs) 

 

    def getWetOpacity(self, *args, **kwargs): 

        """ 

        getWetOpacity(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated Wet Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated Wet Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        for i in range(at.getNumSpectralWindows()): 

                for j in range(at.getNumChan(i)): 

                        print 'Frequency: ', at.getChanFreq(j, i)['value'][0], at.getChanFreq(j, i)['unit'] 

                        print 'Wet opacity:', at.getWetOpacity(j, i)['value'][0], at.getWetOpacity(j, i)['unit'],                      ' for ', at.getUserWH2O()['value'][0], at.getUserWH2O()['unit'], ' H2O' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getWetOpacity(self, *args, **kwargs) 

 

    def getH2OLinesOpacity(self, *args, **kwargs): 

        """ 

        getH2OLinesOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated H2O Lines Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated H2O Lines Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total H2O Lines Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getH2OLinesOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getH2OLinesOpacity(self, *args, **kwargs) 

 

    def getH2OContOpacity(self, *args, **kwargs): 

        """ 

        getH2OContOpacity(self, nc = -1, spwid = 0) -> double 

 

        Summary 

                get the integrated H2O Continuum Opacity along the atmospheric path for channel nc in spectral window spwid 

 

        Description 

                 

 

        Get the integrated H2O Continuum Opacity for one channel in a band. 

 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        fR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total H2O Cont Opacity at ', fC['value'][0], fC['unit'],      ' for 1.0 air mass: ', at.getH2OContOpacity() 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getH2OContOpacity(self, *args, **kwargs) 

 

    def getDryOpacitySpec(self, *args, **kwargs): 

        """ 

        getDryOpacitySpec(self, spwid = 0, _dryOpacity = _dryOpacity_getDryOpacitySpec) -> int 

 

        Summary 

                get the integrated Dry optical depth along the atmospheric path on each channel of a band 

 

        Description 

                 

 

        Get the integrated Dry optical depth along the atmospheric path on each channel in a band. 

 

 

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

 

        Output Parameters: 

                _dryOpacity      dry opacity for each channel  

                 

        Example: 

                 

 

        at.getDryOpacitySpec() 

        # (8,  

        #  array([0.12113794420465548, 0.11890122206854335, 

        #         0.11713584932434795, 0.11572780449702716, 

        #         0.11459567027114714, 0.11368004975916192, 

        #         0.11293678422232195,0.11233248854020933])) 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getDryOpacitySpec(self, *args, **kwargs) 

 

    def getWetOpacitySpec(self, *args, **kwargs): 

        """ 

        getWetOpacitySpec(self, spwid = 0, _wetOpacity = _wetOpacity_getWetOpacitySpec) -> int 

 

        Summary 

                get the integrated Wet optical depth along the atmospheric path on each channel of a band 

 

        Description 

                 

 

        Get the integrated optical Wet depth along the atmospheric path on each channel in a band. 

 

 

 

        Input Parameters: 

                spwid            Int standing for spectral window id (0-based) 0  

                 

 

        Output Parameters: 

                _wetOpacity      wet opacity for each channel in band - Quantum with a vector value and unit of mm-1  

                 

        Example: 

                 

 

        sw=at.getWetOpacitySpec() 

        # returns a tuple of 

        # 0 - The number of channels and 

        # 1 - an quantity array of wet opacity for each channel in band 

        sw[1]['value'] 

        # array([1.7225454913767393, 1.7204246078103735, 

        #        1.7188614166349163, 1.7179243635081174, 

        #        1.7177278069990962, 1.7184525049248152, 

        #        1.7204244157129918, 1.7242351137518073]) 

 

        sw[0] 

        # 8 

 

        Another example: 

        for s in range(at.getNumSpectralWindows()): 

                print 'band', s 

                for i in range(at.getNumChan(0)): 

                        print ' - dryOpacity ', at.getDryOpacitySpec(spwid=s)[1][i], ' wet Opacity/mm ',                      at.getWetOpacitySpec(spwid=s)[1]['value'][i] 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getWetOpacitySpec(self, *args, **kwargs) 

 

    def getDispersivePhaseDelay(self, *args, **kwargs): 

        """ 

        getDispersivePhaseDelay(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated zenith H2O Atmospheric Phase Delay 

 

        Description 

                 

        Get the integrated zenith H2O Atmospheric Phase Delay (Dispersive part)  

        for the current conditions, for channel number nc of spectral window spwid. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getUserWH2O() 

        numSpw = at.getNumSpectralWindows() 

        for spwid in range(numSpw): 

                numCh = at.getNumChan(spwid) 

                print 'Spectral window ', spwid, ' has ', numCh, ' frequency channels' 

                for n in range(numCh): 

                        freq = at.getChanFreq(n, spwid) 

                        print 'Total Dispersive Phase Delay at ',freq['value'][0], freq['unit'], ' for 1.0 air mass: ',                      (at.getDispersivePhaseDelay(n, spwid)['value'][0])/(w['value'][0]),' degrees per mm of water vapor (',                       ((100*at.getDispersivePhaseDelay(n, spwid)['value'][0])/(w['value'][0]))/(at.getNonDispersivePhaseDelay(n,spwid)['value'][0]/w['value'][0]),                      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getDispersivePhaseDelay(self, *args, **kwargs) 

 

    def getDispersiveWetPhaseDelay(self, *args, **kwargs): 

        """ 

        getDispersiveWetPhaseDelay(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated dispersive wet Atmospheric Phase Delay 

 

        Description 

                 

        Function to retrieve the integrated wet Atmospheric Phase Delay 

        (Dispersive part) along the atmospheric path corresponding to the 1st 

        guess water column. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getUserWH2O() 

        numSpw = at.getNumSpectralWindows() 

        for spwid in range(numSpw): 

                numCh = at.getNumChan(spwid) 

                print 'Spectral window ', spwid, ' has ', numCh, ' frequency channels' 

                for n in range(numCh): 

                        freq = at.getChanFreq(n, spwid) 

                        print 'Total Dispersive Wet Phase Delay at ', freq['value'][0], freq['unit'], ' for 1.0 air mass: ',                      (at.getDispersiveWetPhaseDelay(n, spwid)['value'][0])/(w['value'][0]), ' degrees per mm of water vapor (',                      ((100*at.getDispersiveWetPhaseDelay(n, spwid)['value'][0])/(w['value'][0]))/(at.getNonDispersiveWetPhaseDelay(n,spwid)['value'][0]/w['value'][0]),                      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getDispersiveWetPhaseDelay(self, *args, **kwargs) 

 

    def getNonDispersiveWetPhaseDelay(self, *args, **kwargs): 

        """ 

        getNonDispersiveWetPhaseDelay(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated nondispersive wet Atmospheric Phase Delay 

 

        Description 

                 

        Function to retrieve the integrated wet Atmospheric Phase Delay 

        (NonDispersive part) along the atmospheric path corresponding to the 1st 

        guess water column. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getUserWH2O() 

        numSpw = at.getNumSpectralWindows() 

        for spwid in range(numSpw): 

                numCh = at.getNumChan(spwid) 

                print 'Spectral window ', spwid, ' has ', numCh, ' frequency channels' 

                for n in range(numCh): 

                        freq = at.getChanFreq(n, spwid) 

                        print 'Total Dispersive Wet Phase Delay at ', freq['value'][0], freq['unit'], ' for 1.0 air mass: ',                      (at.getDispersiveWetPhaseDelay(n, spwid)['value'][0])/(w['value'][0]), ' degrees per mm of water vapor (',                      ((100*at.getDispersiveWetPhaseDelay(n, spwid)['value'][0])/(w['value'][0]))/(at.getNonDispersiveWetPhaseDelay(n,spwid)['value'][0]/w['value'][0]),                      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNonDispersiveWetPhaseDelay(self, *args, **kwargs) 

 

    def getNonDispersiveDryPhaseDelay(self, *args, **kwargs): 

        """ 

        getNonDispersiveDryPhaseDelay(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated nondispersive dry Atmospheric Phase Delay 

 

        Description 

                 

        Function to retrieve the integrated dry Atmospheric Phase Delay 

        (NonDispersive part) along the atmospheric path corresponding to the 1st 

        guess water column. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getUserWH2O() 

        numSpw = at.getNumSpectralWindows() 

        for spwid in range(numSpw): 

                numCh = at.getNumChan(spwid) 

                print 'Spectral window ', spwid, ' has ', numCh, ' frequency channels' 

                for n in range(numCh): 

                        freq = at.getChanFreq(n, spwid) 

                        print 'Total Dispersive Dry Phase Delay at ', freq['value'][0], freq['unit'], ' for 1.0 air mass: ',                      (at.getDispersiveDryPhaseDelay(n,spwid)['value'][0])/(w['value'][0]),' degrees per mm of water vapor (',                      ((100*at.getDispersiveDryPhaseDelay(n,spwid)['value'][0])/(w['value'][0]))/(at.getNonDispersiveDryPhaseDelay(n,spwid)['value'][0]/w['value'][0]),                      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNonDispersiveDryPhaseDelay(self, *args, **kwargs) 

 

    def getNonDispersivePhaseDelay(self, *args, **kwargs): 

        """ 

        getNonDispersivePhaseDelay(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated zenith H2O Atmospheric Phase Delay (Non-Dispersive part) 

 

        Description 

                 

        Get the integrated zenith H2O Atmospheric Phase Delay (Non-Dispersive 

        part) for the current conditions, for channel number nc of spectral 

        window spwid. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getUserWH2O() 

        numSpw = at.getNumSpectralWindows() 

        for spwid in range(numSpw): 

                numCh = at.getNumChan(spwid) 

                print 'Spectral window ', spwid, ' has ', numCh, ' frequency channels' 

                for n in range(numCh): 

                        freq = at.getChanFreq(n, spwid) 

                        print 'Total Dispersive Phase Delay at ', freq['value'][0], freq['unit'], ' for 1.0 air mass: ',                      (at.getDispersivePhaseDelay(n,spwid)['value'][0])/(w['value'][0]),' degrees per mm of water vapor (',                      ((100*at.getDispersivePhaseDelay(n,spwid)['value'][0])/(w['value'][0]))/(at.getNonDispersivePhaseDelay(n,spwid)['value'][0]/w['value'][0]),                      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNonDispersivePhaseDelay(self, *args, **kwargs) 

 

    def getDispersivePathLength(self, *args, **kwargs): 

        """ 

        getDispersivePathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated Atmospheric Dispersive Path 

 

        Description 

                 

        Retrieve the integrated Atmospheric Path length (Dispersive part) 

        along the atmospheric path corresponding to the user water column 

        for channel nc in spectral window spwid. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getUserWH2O() 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        nfR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total Dispersive Delay at ', fC['value'][0], fC['unit'], ' for 1.0 air mass: ',      at.getDispersivePathLength()['value'][0] /  w['value'][0], ' meters per mm of water vapor' 

        print '(',100*(at.getDispersivePathLength()['value'][0] /  w['value'][0])/(at.getNonDispersivePathLength()['value'][0] / w['value'][0]),      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getDispersivePathLength(self, *args, **kwargs) 

 

    def getDispersiveWetPathLength(self, *args, **kwargs): 

        """ 

        getDispersiveWetPathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated wet Atmospheric Dispersive Path 

 

        Description 

                 

        Retrieve the integrated wet Atmospheric Path length (Dispersive part) 

        along the atmospheric path corresponding to the 1st guess water column 

        for channel nc in spectral window spwid. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getGroundWH2O() 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        nfR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total Dispersive Delay at ', fC['value'][0], fC['unit'], ' for 1.0 air mass: ',      at.getDispersiveWetPathLength()['value'][0] /  w['value'][0], ' meters per mm of water vapor' 

        print '(',100*(at.getDispersiveWetPathLength()['value'][0] /  w['value'][0])/(at.getNonDispersiveWetPathLength()['value'][0] / w['value'][0]),      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getDispersiveWetPathLength(self, *args, **kwargs) 

 

    def getNonDispersiveWetPathLength(self, *args, **kwargs): 

        """ 

        getNonDispersiveWetPathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated wet Atmospheric NonDispersive Path 

 

        Description 

                 

        Retrieve the integrated wet Atmospheric Path length (NonDispersive part) 

        along the atmospheric path corresponding to the 1st guess water column 

        for channel nc in spectral window spwid. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getGroundWH2O() 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        nfR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total Dispersive Delay at ', fC['value'][0], fC['unit'], ' for 1.0 air mass: ',      at.getDispersiveWetPathLength()['value'][0] /  w['value'][0], ' meters per mm of water vapor' 

        print '(',100*(at.getDispersiveWetPathLength()['value'][0] /  w['value'][0])/(at.getNonDispersiveWetPathLength()['value'][0] / w['value'][0]),      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNonDispersiveWetPathLength(self, *args, **kwargs) 

 

    def getNonDispersiveDryPathLength(self, *args, **kwargs): 

        """ 

        getNonDispersiveDryPathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated dry Atmospheric NonDispersive Path 

 

        Description 

                 

        Retrieve the integrated dry Atmospheric Path length (NonDispersive part) 

        along the atmospheric path corresponding to the 1st guess water column 

        for channel nc in spectral window spwid.  

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getGroundWH2O() 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        nfR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total Dispersive Delay at ', fC['value'][0], fC['unit'], ' for 1.0 air mass: ',      at.getDispersiveDryPathLength()['value'][0] /  w['value'][0], ' meters per mm of water vapor' 

        print '(',100*(at.getDispersiveDryPathLength()['value'][0] /  w['value'][0])/(at.getNonDispersiveDryPathLength()['value'][0] / w['value'][0]),      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNonDispersiveDryPathLength(self, *args, **kwargs) 

 

    def getO2LinesPathLength(self, *args, **kwargs): 

        """ 

        getO2LinesPathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated O2 lines Path 

 

        Description 

                 

        Retrieve the integrated Atmospheric Phase Delay (due to O2 Lines) along  

        the atmospheric path corresponding to the 1st guess water column 

        for channel nc in spectral window spwid.  

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getO2LinesPathLength(self, *args, **kwargs) 

 

    def getO3LinesPathLength(self, *args, **kwargs): 

        """ 

        getO3LinesPathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated O3 lines Path 

 

        Description 

                 

        Retrieve the integrated Atmospheric Phase Delay (due to O3 Lines) along  

        the atmospheric path corresponding to the 1st guess water column 

        for channel nc in spectral window spwid.  

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getO3LinesPathLength(self, *args, **kwargs) 

 

    def getCOLinesPathLength(self, *args, **kwargs): 

        """ 

        getCOLinesPathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated CO lines Path 

 

        Description 

                 

        Retrieve the integrated Atmospheric Path length (due to CO Lines)  

        along the atmospheric path corresponding to the 1st guess water column  

        for channel nc in spectral window spwid.  

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getCOLinesPathLength(self, *args, **kwargs) 

 

    def getN2OLinesPathLength(self, *args, **kwargs): 

        """ 

        getN2OLinesPathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated N2O lines Path 

 

        Description 

                 

        Retrieve the integrated Atmospheric Path length (due to N2O Lines)  

        along the atmospheric path corresponding to the 1st guess water column  

        for channel nc in spectral window spwid.  

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getN2OLinesPathLength(self, *args, **kwargs) 

 

    def getNonDispersivePathLength(self, *args, **kwargs): 

        """ 

        getNonDispersivePathLength(self, nc = -1, spwid = 0) -> Quantity 

 

        Summary 

                get the integrated Atmospheric Non-Dispersive Path 

 

        Description 

                 

        Get the integrated zenith H2O Atmospheric Path length (Non-Dispersive  

        part) for the current conditions, for channel nc in spectral window spwid. 

 

 

        Input Parameters: 

                nc               Channel number (0-based; defaults to reference channel) -1  

                spwid            Int standing for spectral window id (0-based) 0  

                 

        Example: 

                 

 

        w = at.getUserWH2O() 

        nb = 1 

        fC = qa.quantity([850.0], 'GHz') 

        fW = qa.quantity([0.5], 'GHz') 

        nfR = qa.quantity([0.5], 'GHz') 

        at.initSpectralWindow(nb, fC, fW, fR) 

        print 'Total Dispersive Delay at ', fC['value'][0], fC['unit'], ' for 1.0 air mass: ',      at.getDispersivePathLength()['value'][0] /  w['value'][0], ' meters per mm of water vapor' 

        print '(',100*(at.getDispersivePathLength()['value'][0] /  w['value'][0])/(at.getNonDispersivePathLength()['value'][0] / w['value'][0]),      '% of the Non-dispersive one )' 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getNonDispersivePathLength(self, *args, **kwargs) 

 

    def getAbsH2OLines(self, *args, **kwargs): 

        """ 

        getAbsH2OLines(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get H2O lines Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Accessor to get H2O lines Absorption Coefficient at layer nl, 

        spectral window spwid and channel nf. 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsH2OLines(0, 0, 0) 

        print 'H2O lines absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsH2OLines(self, *args, **kwargs) 

 

    def getAbsH2OCont(self, *args, **kwargs): 

        """ 

        getAbsH2OCont(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get H2O continuum Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get H2O continuum Absorption Coefficient at layer nl,  

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsH2OCont(0, 0, 0) 

        print 'H2OCont absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsH2OCont(self, *args, **kwargs) 

 

    def getAbsO2Lines(self, *args, **kwargs): 

        """ 

        getAbsO2Lines(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get O2 lines Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get O2 lines Absorption Coefficient at layer nl,  

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsO2Lines(0, 0, 0) 

        print 'O2 lines absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsO2Lines(self, *args, **kwargs) 

 

    def getAbsDryCont(self, *args, **kwargs): 

        """ 

        getAbsDryCont(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get Dry Continuum Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get Dry Continuum Absorption Coefficient at layer nl,  

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsDryCont(0, 0, 0) 

        print 'Dry Continuum absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsDryCont(self, *args, **kwargs) 

 

    def getAbsO3Lines(self, *args, **kwargs): 

        """ 

        getAbsO3Lines(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get O3 lines Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get O3 lines Absorption Coefficient at layer nl,   

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsO3Lines(0, 0, 0) 

        print 'O3 lines absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsO3Lines(self, *args, **kwargs) 

 

    def getAbsCOLines(self, *args, **kwargs): 

        """ 

        getAbsCOLines(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get CO lines Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get CO lines Absorption Coefficient at layer nl,  

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsCOLines(0, 0, 0) 

        print 'CO lines absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsCOLines(self, *args, **kwargs) 

 

    def getAbsN2OLines(self, *args, **kwargs): 

        """ 

        getAbsN2OLines(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get N2O lines Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get N2O lines Absorption Coefficient at layer nl,  

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsN2OLines(0, 0, 0) 

        print 'N2O lines absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsN2OLines(self, *args, **kwargs) 

 

    def getAbsTotalDry(self, *args, **kwargs): 

        """ 

        getAbsTotalDry(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get Total Dry Absorption Coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get total dry Absorption Coefficient at layer nl,  

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsTotalDry(0, 0, 0) 

        print 'Total dry absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsTotalDry(self, *args, **kwargs) 

 

    def getAbsTotalWet(self, *args, **kwargs): 

        """ 

        getAbsTotalWet(self, nl, nf = 0, spwid = 0) -> Quantity 

 

        Summary 

                 

        Get total wet absorption coefficient at layer nl and frequency channel nf in spectral window spwid 

            

 

        Description 

                 

        Get total wet absorption coefficient at layer nl,  

        spectral window spwid and frequency channel nf 

 

 

        Input Parameters: 

                nl               atmospheric layer number  

                nf               frequency channnel number 0  

                spwid            spectral window id 0  

                 

        Example: 

                 

 

        ac = at.getAbsTotalWet(0, 0, 0) 

        print 'Total wet absorption coefficient for layer 0, channel 0 is ', ac['value'][0], ac['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAbsTotalWet(self, *args, **kwargs) 

 

    def setUserWH2O(self, *args, **kwargs): 

        """ 

        setUserWH2O(self, wh2o = Quantity(std::vector<double>(1, 0.0),"mm")) -> bool 

 

        Summary 

                set the user zenith water vapor column 

 

        Description 

                 

 

        Set user zenith water vapor column for forward radiative transfer 

        calculations. 

 

 

 

        Input Parameters: 

                wh2o             User water vapor column 0.0  

                 

        Example: 

                 

 

        wh2o=qa.quantity(0.8,'mm') 

        at.setUserWH2O(wh2o) 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_setUserWH2O(self, *args, **kwargs) 

 

    def getUserWH2O(self): 

        """ 

        getUserWH2O(self) -> Quantity 

 

        Summary 

                get the user zenith water vapor column 

 

        Description 

                 

 

        Get user zenith water vapor column for forward radiative transfer 

        calculations. 

 

 

        Example: 

                 

 

        print 'water vapor column: ', at.getUserWH2O()['value'][0], at.getUserWH2O()['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getUserWH2O(self) 

 

    def setAirMass(self, *args, **kwargs): 

        """ 

        setAirMass(self, airmass) -> bool 

 

        Summary 

                Set the air mass 

 

        Description 

                 

        Setter for air mass in SkyStatus without performing water vapor retrieval. 

 

 

        Input Parameters: 

                airmass          Air Mass  

                 

        Example: 

                 

 

        at.setAirMass(1.51) 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_setAirMass(self, *args, **kwargs) 

 

    def getAirMass(self): 

        """ 

        getAirMass(self) -> double 

 

        Summary 

                Get the air mass 

 

        Description 

                 

        Accessor to get airmass. 

 

        Example: 

                 

 

        at.setAirMass(2.0) 

        print '(INPUT CHANGE) Air mass: ', at.getAirMass() 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAirMass(self) 

 

    def setSkyBackgroundTemperature(self, *args, **kwargs): 

        """ 

        setSkyBackgroundTemperature(self, tbgr = Quantity(std::vector<double>(1, 2.73),"K")) -> bool 

 

        Summary 

                Set the sky background temperature 

 

        Description 

                 

                Set sky background temperature in SkyStatus without performing water vapor retrieval 

 

 

        Input Parameters: 

                tbgr             sky background temperature 2.73  

                 

        Example: 

                 

 

        at.setSkyBackgroundTemperature(qa.quantity(2.73,'K')) 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_setSkyBackgroundTemperature(self, *args, **kwargs) 

 

    def getSkyBackgroundTemperature(self): 

        """ 

        getSkyBackgroundTemperature(self) -> Quantity 

 

        Summary 

                Get the sky background temperature 

 

        Description 

                 

        Get the sky background temperature 

 

        Example: 

                 

 

        t = at.getSkyBackgroundTemperature() 

        print t['value'][0], t['unit'] 

        # 2.73 K 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getSkyBackgroundTemperature(self) 

 

    def getAverageTebbSky(self, *args, **kwargs): 

        """ 

        getAverageTebbSky(self, spwid = 0, wh2o = Quantity(std::vector<double>(1, -1),"mm")) -> Quantity 

 

        Summary 

                Returns average equiv. BB Temp 

 

        Description 

                 

        Returns the average Equivalent Blackbody Temperature in spectral 

        window spwid, for the current conditions and a perfect sky coupling. 

 

 

        Input Parameters: 

                spwid            Spectral window (0-based) 0  

                wh2o             User specified water column length in mm. Default is not to use wh2o. -1  

                 

        Example: 

                 

 

        wh2o = qa.quantity(0.4,'mm') 

        print '(INPUT CHANGE) water vapor column:', wh2o['value'], wh2o['unit'] 

        print '(NEW OUTPUT) T_EBB =', at.getAverageTebbSky(0,wh2o)['value'][0], at.getAverageTebbSky(0,wh2o)['unit'] 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getAverageTebbSky(self, *args, **kwargs) 

 

    def getTebbSky(self, *args, **kwargs): 

        """ 

        getTebbSky(self, nc = -1, spwid = 0, wh2o = Quantity(std::vector<double>(1, -1),"mm")) -> Quantity 

 

        Summary 

                Returns equiv. BB Temp 

 

        Description 

                 

        Gets the Equivalent Blackbody Temperature in spectral window spwid and 

        channel nc, for Water Vapor Column wh2o, the current Air Mass, and 

        perfect Sky Coupling to the sky. 

 

 

        Input Parameters: 

                nc               Channel number (0-based) - defaults to reference channel -1  

                spwid            Spectral window (0-based) 0  

                wh2o             User specified water column length in mm. Default is not to use wh2o. -1  

                 

        Example: 

                 

 

        for s in range(at.getNumSpectralWindows()): 

                for i in range(at.getNumChan(s)): 

                        print 'Band', s, ' channel ', i, 'TebbSky = ', at.getTebbSky(i,s)['value'][0], at.getTebbSky()['unit'] 

 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getTebbSky(self, *args, **kwargs) 

 

    def getTebbSkySpec(self, *args, **kwargs): 

        """ 

        getTebbSkySpec(self, spwid = 0, wh2o = Quantity(std::vector<double>(1, -1),"mm"),  

            _tebbSky = _tebbSky_getTebbSkySpec) -> int 

 

        Summary 

                Returns equiv. BB Temp on each channel of a band 

 

        Description 

                 

        Gets the Equivalent Blackbody Temperatures in a spectral window spwid  

        for Water Vapor Column wh2o, the current Air Mass, and 

        perfect Sky Coupling to the sky. 

 

 

        Input Parameters: 

                spwid            Spectral window (0-based) 0  

                wh2o             User specified water column length in mm. Default is not to use wh2o. -1  

                 

 

        Output Parameters: 

                _tebbSky         the Equivalent Blackbody Temperatures in a band - Quantum with a vector value and unit of K  

                 

        Example: 

                 

        sw=at.getWetOpacitySpec() 

        # returns a tuple of 

        # 0 - The number of channels, and 

        # 1 - the Equivalent Blackbody Temperatures in a band 

        sw[1]['value'] 

        # [34.687910103670511, 

        #  35.496193465331679, 

        #  36.460355664151791, 

        #  37.419146813713745, 

        #  37.9452005127634, 

        #  38.722631196093729, 

        #  39.593561594172662, 

        #  40.528694048924017] 

 

        sw[0] 

        # 8 

 

        Another example: 

        for s in range(at.getNumSpectralWindows()): 

                print 'band', s 

                tebbspec = at.getTebbSkySpec(spwid=s) 

                for i in range(at.getNumChan(s)): 

                        print ' - TebbSky %f [%s] ' % (tebbspec[1]['value'][i],tebbspec[1]['unit']) 

 

 

        -------------------------------------------------------------------------------- 

                       

        """ 

        return _atmosphere.atmosphere_getTebbSkySpec(self, *args, **kwargs) 

 

atmosphere_swigregister = _atmosphere.atmosphere_swigregister 

atmosphere_swigregister(atmosphere) 

cvar = _atmosphere.cvar 

 

# This file is compatible with both classic and new-style classes.