
CASA Alpha patch 20070417

Key changes:

• Task interface enhancement
• Data selection enhancement
• XY Display enhancement
• Flag versions have been enabled
• Reassignment of CASA tool/task names disabled
• ALMATST5 stability issues
• Matplotlib profiling
• Summary interface changes

Task interface enhancement
The task interface was improved in the following ways:
• Error handling: the input file is tested for existence in all cases (avoiding throwing

more obscure messages when problems arise); a non-existent file will be marked in
red by ‘inp’ command to help signal the user (see below).

• Default values for parameters were improved based on task context; single line help
can also change based on the use of the parameter in a task.

• Task parameter lists can expand and contract based on the user-specified values of
other parameters. This allows generally concise parameter lists for a task unless
parameters are needed. See figure below for an illustration. Formatting of parameter
lists in interactive mode is used to highlight the type of parameters available:

o Key: parameter = value
♣ parameter

• Plain black font = standard parameter
• Bold black font + grey highlight = expandable parameter; setting this

parameter to different values will open up access to relevant sub parameters.
• Indented green font = sub parameter

♣ Value
• Black font = parameter is set to default value
• Blue font = parameter is set to non-default value
• Red font = parameter is outside of the menu choice options, or is the wrong

type.

Figure 1 CASA format of 'inp' command for clean task at startup. Note the mode, alg,
weighting and uvfilter parameters are bold indicating that they may expand based on
user choices. The use of grey highlighting also distinguishes these parameters.

Figure 2 CASA format of 'inp' command for clean task after task execution. The blue-
colored values indicate parameters set to values different from the default. The
combination of indenting and green color indicates sub parameters.

Figure 3 CASA format of 'inp' command illustrating 'bad' values for the vis and mode
parameters. The vis parameter has the wrong type; the mode parameter is not an
acceptable option - both are drawn in red to draw attention to the problem.

Data selection enhancement

As was noted, the data selection rules varied across task and lacked flexibility. These
have been made uniform across the tool level and are in the process of being standardized
across the tasks (scheduled for the June 15 patch). The plotxy task currently features this
and illustrates how it will be implemented for the other tasks:
The standard selection parameters available and some examples are given below:

--- Select Data ---
 selectdata -- Select a subset of the visibility file data to plot
 default: False; example: selectdata=True
 baseline -- Select data based on baseline
 default: '' (all); example: baseline='5&6' baseline 5-6
 baseline='5&6;7&8' #baseline 5-6 and 7-8
 baseline='5' # all baselines with antenna 5
 baseline='5,6' # all baselines with antennas 5 and 6
 spw -- Select data based on spectral window
 default: '' (all); example: spw='1'
 spw='<2' #spectral windows less than 2
 spw='>1' #spectral windows greater than 1
 field -- Select data based on field id(s) or name(s)
 default: '' (all); example: field='1'
 field='0~2' # field ids inclusive from 0 to 2
 field='3C*' # all field names starting with 3C
 uvrange -- Select data based on uvrange(s)
 default: '' (all); example:
 uvrange='0~1000' # uvranges from 0-1000 meters
 uvrange='>4kl' #uvranges greater than 4 kilo lambda
 timerange -- Select data based on time range:
 default = '' (all); example,
 timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss'
 Note: YYYY/MM/DD can be dropped as needed:
 timerange='09:14:0~09:54:0' # this time range
 timerange='09:44:00' # data within one integration of time
 timerange='>10:24:00' # data after this time
 timerange='09:44:00+00:13:00' #data 13 minutes after time
 scan -- Select data based on scan number - Not Yet Implemented
 default: '' (all); example: scan='>3'

XY display enhancement/interface change
• Interface change: the flagxy task has been removed and its functionality

has been added to the plotxy task.
• Interface change: the revised data selection facilities have been included in

the plotxy task.
• Display and flagging on spectral/polarization averages are now available.

See the example below:

Figure 4 Full set of parameters for plotxy task. Setting ‘enableflag=True’ will trigger the
interactive mode allowing the user to draw regions on the plot and then choose to either
flag, unflag or identify (locate) the data.

Figure 5 Results of flagging the third 5-channel average in the lower plot; note that the
five channels which composed the average are then also flagged.

The script to make this plot is:
plotxy(vis="ngc5921.ms", xaxis="channel", yaxis="amp", datacolumn="data",
selectdata=True, field="0", subplot=211)
plotxy(vis="ngc5921.ms", xaxis="channel", yaxis="amp", datacolumn="data",
selectdata=True, field="0", selectsp=True,start=[-1], end=[-1], step=[5], aswidth=True, average="chan",
subplot=212, enableflag=True,diskwrite=True)
#select the region around the third, 5-channel average:
#click the Right ‘+’ box to mark the region and then click it again to end region selection
#type ‘f’ in the command console to ‘flag’ the data

Flag versions have been enabled
• There is a new task, flagmanager:

Figure 6 Illustration of the flagmanager task in each of its modes.

Example:
1) plot data of interest, e.g., uvdist plot

a. plotxy('ngc5921.ms','uvdist',selectdata=True,field='0')

Figure 7 Starting data display (no flagging).

2) save starting flags
a. flagmanager('ngc5921.ms',mode='save',versionname='original',comment='starting flags')

3) list flag versions
a. flagmanager(‘ngc5921.ms’,mode=’list’)
b. #look in logger to see the entry:

i. main: working copy in main table
ii. original: starting flags

4) flag some data
a. plotxy(‘ngc5921.ms’,’uvdist’,selectdata=True,field=’0’,enableflag=True)
b. #click on the right-most matplotlib button (the cross), mark region(s) and then click on

the button again. You will be prompted to type: ‘f’ for flag, ‘u’ for unflag, or ‘l’ for
locate; type ‘f’ and <return>

Figure 8 Flag version 'cliphigh'; data was clipped above 1.85.

5) save this version of flags
a. flagmanager(‘ngc5921.ms’,mode=’save’,versionname=’cliphigh’,comment=’clip above

1.85’)
6) restore previous flag version

a. flagmanager(‘ngc5921.ms’,mode=’restore’,versionname=’original’)
b. #default is to replace the flags with the version specified

7) flag different data
a. plotxy(‘ngc5921.ms’,’uvdist’,selectdata=True,field=’0’,enableflag=True)
b. #click on the right-most matplotlib button (the cross), mark region(s) and then click on

the button again. You will be prompted to type: ‘f’ for flag, ‘u’ for unflag, or ‘l’ for
locate; type ‘f’ and <return>

Figure 9 Flag version 'smiley'; intended to be easily recognizable!

8) save this version of flags
a. flagmanager(‘ngc5921.ms’,mode=’save’,versionname=’smiley’, comment=’easily

recognizable flag region’)
9) restore previous flag version and merge it into the existing flags

a. flagmanager(‘ngc5921.ms’,mode=’restore’,versionname=’cliphigh’,merge=’or’)

Figure 10 Combined flags using 'smiley' and 'cliphigh' flag versions.

Reassignment of CASA tools/tasks is disabled
• Python natively does not allow variable names to be protected. A means of

protecting CASA and system variables has been enabled:

Figure 11 Illustration of the protection of CASA and system functionality.

ALMA TST5 Stability issues
The following issues resulting in a crash of CASA have been resolved:

 Imager (infinite loop when dirty beam is poorly defined)
 Imager (corrupted HISTORY table)
 Crash of flagxy
 Crash of ploxy when MS doesn’t exist
 “Crash” of flagxy when there is no data to plot
 Crash of the split task

deferred: crash of flagdata (new flag tool is under development).
postponed: tablebrowser issues

matplotlib profiling

• Case:
o 700 MB dataset
o DATA

• = 2 polarizations x 7 channels x 1876352 rows
• = 26268928 points
• = 210 MB (stored as Double or Complex)
• = 100 MB (stored as Float)

• Note: 100 MB: only Y-axis data (Float) + 15 MB
for X-axis data (Double)

• Read time from disk
o Expectation:

• = 20 MB/s (standard)
• = ~10 seconds read time

o Result:
• = 29 seconds reported

• Note: includes 26 million of the following
operation: SQRT(REAL^2+IMAG^2)

• Current effort: exploring a Python compile option
difference between Mac and Linux. Exploring time
versus memory optimization efforts (e.g., if we only
need to plot, then a column access (rather than row-
based) can be used to speed up the read.

• Memory allocated
o Expectation:

• = 420 MB (Double for both X and Y) + flags
o Result:

• = 273 MB (before matplotlib does its allocation)
• = 676 MB after plotting

• matplotlib backend keeps a copy of both X and Y in
Double precision (to facilitate panning and zooming
without having to re-read from disk)

• Current effort: exploring alternate backends;
working to write a backend that does not require
this.

• Plotting time
o Expectation:

• = 52 seconds (matplotlib does ~500K pts/sec natively)
o Result:

• = 60 seconds

• SUMMARY:

o The matplotlib backend used by CASA makes an additional copy
of the data to be plotted to enable faster zoom/pan operations
(without having to read from the disk again). In addition, we found
that the plotting code within CASA was making an additional,
superfluous copy of the data; this was removed.

o The disk-read times for Linux systems were found to be worse
than for outside of CASA (not seen on Mac OSs); we are working
to resolve this.

o The CASA plotting speed is now roughly the same as for native
matplotlib.

Key interface changes
The following lists the items that likely have to change in scripts:

• importvla now labels the antenna names as:
o VAxx: for VLA antennas; xx indicates the two-character name of

the antenna, e.g., VA01, VA18
o EAxx: for EVLA antennas; xx is the same as above
o Result: refant parameters will need to change in scripts if they

were specified.
• restore task has been removed; use the default task instead.
• flagxy task has been removed; its functionality has been combined into the

plotxy task.
• plotxy task has new parameters for data selection.

