Build System Plan v1.1

Jonas Larsen

ESO/SDD/ALMA
March 22, 2010

Contents
1 Introduction 1
2 Requirements 2
2.1 Discussiono 7
3 Build technologies 8
3.1 Parallel builds 10
3.2 Discussiono 11
4 Solution 15
4.1 Actionso, 17
4.2 Implementation Lo 20
4.2.1 Roll-out 21
4.3 Maintenance L 22
4.4 Usageo 22
4.4.1 Per-module development 23
4.4.2 Configuring the build 23
4.5 Possible issues 24

1 Introduction

Developers have found that using CASA’s build system, carried over from
the AIPS++ project, can be anything from easy over cumbersome to impos-
sible at worst. The purpose of this memo is to identify what the issues are,

1

and to describe how these issues are solved.

The direct goal of reworking the build system is to reduce the time that
developers spend on building CASA.

As an indirect effect, it can be hoped that a more reliable and reproducible
build process will have a positive impact on the perceived lack of stability
experienced by developers, testers and end-users.

Section 2 describes the requirements of an improved build system, section
3 discusses build tools, and section 4 outlines the new build system.

2 Requirements

I have solicited internal and external CASA developers about what the cur-
rent problems are, and how the build experience can be improved. In no
particular order the requirements/requests/wishes/recommendations were as
follows (some of the requirements may already be satisfied):

R1. The build system must work portably on all development
platforms. The build system should be portable. It should be possible
to develop CASA on the current supported development platforms (for the
purpose of this memo taken to be RHEL 4.x, RHEL 5.x in 32bit and 64-bit
variants, and OS X 10.5 and 10.6) and on likely future platforms.

R2. Better documented how to install CASA from scratch. It
should be more accurately documented how someone installs the prerequisite
packages, checks out the source code and compiles the code, on all supported
development platforms. We often document the procedure as evidenced by

https://safe.nrao.edu/wiki/bin/view /Software/ CASAlnstallFromSource
*https://safe.nrao.edu/wiki/bin/view/Software/ CASACoreMigration
https://safe.nrao.edu/wiki/bin/view /Software/CASABuildInstructions
https://safe.nrao.edu/wiki/bin/view /Software/ CASADevelopmentBuildCycle

https://safe.nrao.edu/wiki/bin/view /Software/DevelopingCasaMac

2

https://safe.nrao.edu/wiki/bin/view/Software/BuildingWithoutMacPorts
*https://svn.cv.nrao.edu/casa/osx_distro/developer.notes

(marked with * the ones I think are most up to date), but we are not very
good at maintaning this documentation, which has a tendency of being too
sketchy and always more or less out of date. While email support is al-
ways available, it takes much head-scratching for external as well as internal
developers to create a development build.

R3. Flexible and configurable locations of dependency packages.
This is for developers who wish to experiment with different versions of de-
pendency packages. It should be possible to configure the location of pack-
ages and have more than one version of an external package installed at the
same time. It is currently not possible (or easy) for example with python
which is distributed as RPM (3rd party tar ball on Mac) and is installed in
a non-configurable place.

R4. Possible to verify external dependencies before building. This
is to reduce the time that developers spend on configuring their system,
where the current work cycle (sneeze + yum install + sneeze + yum install
+ ... ad lib) can be very tedious and non-obvious in relating error messages
to missing packages and/or a wrong makedefs. The verification step should

include a check that the version numbers of external packages are appropriate
for CASA !

R5. Support for debug builds. Apart from being able to build produc-
tion code, the build system should support creating debug builds (turning
on the -g compiler flag for GCC and define appropriate preprocessor flags
-DAIPS_DEBUG -DCASA _DEBUG (TBC)).

R6. Documentation. It must be possible to build the documentation
from the source (the make targets docsys and docscan). This should not be
part of compiling the code, but as optional operations.

!This is the functionality of install/configure, except the script has drifted away from
the code.

R7.

Use widespread technologies rather than unknown and un-

proven technologies. All other things being equal, the advantages of us-
ing a widespread technology include

Being more in use implies being more tested implies being more likely
to work better (more mature),

Documentation is widely available (e.g, for developers who want to
understand the implications of a specific error message, or for build
maintainers who can consult external experts on how to best implement
a given feature),

There is possibility of knowledge transfer for developers who work(ed)
with other projects than CASA,

Maintenance will be easier, because the CASA team does not carry the
maintenance burden (for example, porting to a future platform).

RS8. A single build command must build completely and correctly.
Developers should not spend time and tedious efforts on figuring out which
sequence of commands produce a correct build. The build system mechanics
should rebuild exactly the files that are necessary, no more and no less. The
current build system does not meet this goal,

It is often necessary to clean up object files, in order to force a rebuilding
(e.g. to avoid unresolved symbols in libraries). This often occurs in
connection with generated code.

When removing or adding a header file, dependency information may
break and must be remade somehow.

Sometimes the build will hang and needs to be stopped manually (for
example when updatelib was killed by CTRL-C, or if the build trips on
a file starting with #-character (likely to happen for Emacs users)).

(192

It is sometimes necessary to remove files containing “:” (such as casapy
log files) from a source directory, in order to avoid build failures.

Generated code is a multiple step process that requires editing/copying
a generated header file, although there are no fundamental reasons why
generated code cannot be treated like any other intermediate build
products.

e It is sometimes (e.g. for linking casapy to dbus on RH4) necessary to
define $LD_LIBRARY _PATH, in order to avoid linking errors at build-
time and run-time.

While most of these issues are simple for a developer to work around after
debugging what the problem was, they add unnecessary complexity to the
build process, and resulting libraries and executables may depend on the
sequence of steps which the developer chose.

R9. Developers should use the same method for building. Cur-
rently, some developers use SCons to build casacore, others use GNU make.
On some occasions, this has lead to incompatibilities between different devel-
opers’ builds. It has caused incompatibilities between Linux and Mac release
builds (where Mac releases are created using SCons, and Linux releases are
created using GNU make).

R10. It should be possible to work (edit/build/test) in a single
subdirectory. Because it can be inefficient if the entire project needs to
be recompiled (and dependencies regenerated) when a developer makes small
changes in a module. Also, a developer may want to break client code tem-
porarily and integrate a module’s changes with the full build just once.

R11. Flexibile location of data used for unit tests. The build sys-
tem should not impose any particular directory structure for unit test data.
I think this requirement may already be satisfied with the current build sys-
tems used.

R12. Faster build times. The build system should support parallel
builds. That parallel builds (invoked with make -j) do not work in the
current build system is another symptom that the makefiles do not accu-
rately describe the true dependency graph. Additionally, incremental builds
and null builds should be faster by avoiding to redundantly recompile what
is already up to date. Parallel builds, which process subdirectories sequen-
tially, are possible (and under-documented) by defining PARALLEL MAKE :=
$ (MAKE) -j <n> in makedefs.

R13. Support for out-of-source builds. It should be possible to put
build products in a directory separate from the source code. Advantages
of out-of-source builds are that it is easier to identify added source files
(thus harder to forget to check them in), it is possible to have several builds
based on the same source (e.g. production and debug builds, or builds using
different compiler or library versions). This is not possible in the current
build system.

R14. The development and release builds should follow the same
directory structure. Also, header files and relevant libraries should be
included in release distributions. This is to make it easier to switch between
environments, and to allow using a binary distribution for (some limited kinds
of) developments. Exported header files should be namespace protected, e.g.
by placing them in <prefix>/include/casa/*.

R15. Increase the unit test coverage. The purpose is to catch more
problems earlier.

R16. Modular unit testing framework. It should be quick to run a
single unit test. It should be possible to hook up a debugger on the test
executables. This seems to be impossible with the current build system,
where invoking “make runtests” from a directory will always build, then run,
then remove all of the test programs as a monolithic operation.

R17. It should be easy to identify which version of CASA is run-
ning. CASA’s so-called build number, shown as part of the startup mes-
sage, closely follows but is different from the source code revision number.
This makes it difficult for developers and testers (including developers and
non-developers) to identify which code changes have made it into a given
build. While the code version number is not shown on startup, it is available
at run-time as casal[’source’] [’revision’].

R18. Do not create new active/stable builds at AOC if certain
baseline tests fail. FExactly which tests are to be considered baseline tests
for each branch is TBD.

R19. Easier to synchronize non-committed changes. Developers
may sometimes have several local builds, and want to share local, uncom-
mitted changes between such builds. The problem with checking in things
under development is that it might step on other unrelated developments
(or be stepped upon by unrelated developments). As a solution for devel-
opers making such bigger chunks of developments, I would suggest (a cur-
rently non-existing practice) to create a “private”, temporary branch start-
ing from the active branch. When developments have finished, the branch is
merged /copied back to the active branch, and deleted.

R20. Do not delete intermediate build products. Because debugging
with gdb works better on Mac, when intermediate object files exist.

This concludes the list of requirements that I received, and I agree with
all of these. The only of my own wishes for a better build system, which was
not already listed is

R21. Verify the version number of external libraries at runtime
Because even if external library version numbers are verified during the build
process, the casapy executable may still accidentally pick up a different ver-
sion at runtime. The consequences of this range from nothing to surprising
and difficult to understand behaviour. If the compile time and runtime ver-
sion numbers differ, a warning should be shown. Also, to ease debugging,
it should be possible to display the version numbers of all external packages
from within a casapy session.

2.1 Discussion

Many of the requirements (R2, R4, R8, R9, R17, R21) are related to the
same issue: reproducability and lack thereof. When two different persons
use the same version of the code, they should get the same behaviour. If
that is not so, time is being wasted on disagreeing with the behaviour (“It
works for me.”). The problems with unreproducible behaviour include

e If adeveloper cannot reproduce a reported problem, it is difficult /impossible
to solve.

e Conversely, seeing a local problem in module XYZ (for example a com-
pilation error or a runtime crash) can be a major obstacle that has
to be debugged locally, because the expert on module XYZ could not
reproduce the problem.

e If the build is not reproducible, it is easier to break (“It worked for me
when I checked it in!”).

e After having seen much transient, unreproducible, “flaky” behaviour
which turned out to be a build issue not reproducible elsewhere, it is
a reasonable, mental response to start ignoring any such behaviour. It
makes us blind to the real problems.

The need for human intervention in the build process is not just a consump-
tion of FTEs; it makes the build process less reproducible and reliable, be-
cause human beings are much worse than computer programs when it comes
to repeating a sequence of operations, and keeping track of what they did.

3 Build technologies

I have looked into the following technologies (read documentation, made
experiments, asked around). This is a short (subjective) overview of the
different tools available. For more discussion, pro et contra, see also [1] and

2].

GNU make GNU make has the advantages that makefiles are simple to
get started with and everyone knows them. GNU make allows but does not
provide things like dependency tracking, portable building of executables
and shared and static libraries and handling generated code; this is to be
implemented by the user of GNU make. While GNU make is ideal for simple
projects with a few files, it takes much skill and diligence to implement well-
working makefiles for larger projects. The makefiles tend to contain much
low-level code and mechanics, compared to the higher level alternatives. See
also [4].

ATPS++ makefiles The Current Build System (from now on CBS) adds a
layer on top of GNU make, thereby avoiding the complexity of make at the ap-

plication level. The mechanics is implemented in the generic code/install /makefile.*

8

which define the rules for building various kind of code (C++, XML, ...). At
the highest level, the module makefiles are typically very short and concise.
The configuration of the build (compilation options and location of external
packages) is defined in the pivotal makedefs.

ACSMakefiles The build system used for building ALMA on-line soft-
ware is designed similar to the CBS with a core of makefiles that implement
the mechanics, and are included by the application specific makefiles. Fea-

tures include support for generating Java, C++ and Python interfaces from
CORBA IDL.

GNU autotools The GNU autotools (autoconf/automake/libtool) were
created as a general purpose build tool which addresses some of the prob-
lems with GNU make. They raise the abstraction level compared to raw
make, by providing support for dependency generation and building executa-
bles and static/shared libraries for many languages (C++, C, Fortran, ...),
portably on many UNIX-platforms, and comes with a built-in unit testing
framework. A configure script and makefiles are generated from configure.ac
and Makefile.am specifications. Short Makefile.am’s produce portable and
correct makefiles with many features (which would be a major undertaking
to do by hand using GNU make). The autotools are very widespread.

CMake CMake (Cross Platform Make) is a makefile generator, a high-
level, portable build system, similar in spirit to the GNU autotools. A differ-
ence is that CMake supports other “back-ends” than GNU make, including
Eclipse CDT and XCode on Mac. The back-end makefiles? are generated
from CMakeLists.txt specifications.

Ant Ant derives from a Java tradition, but has support for CASA relevant
languages, too. It is implemented in Java, and the makefiles are written in
XML.

SCons SCons is a high-level build system. Its makefile language is python,
which has the advantage that there is no new language to learn if you already

Z“makefile” is used in the generic sense, referring to the configuration filesof a given

build tool, without implying a particular technology.

know python. SCons uses checksums to tell if object files are up to date. This
is safer than file time stamps (on non-exact file systems), and potentially
more efficient: For example, if a comment is changed in a C++4 source file,
the corresponding object file gets regenerated with a new time stamp but
the same checksum. Unlike make-based systems, SCons will know that it
is not necessary to relink the library or executable that depends on that
object file. Unlike GNU autotools and CMake, SCons does not have separate
configuration and build steps, both of which are contained in the SConstruct
files.

Boost.Build The Boost.Build system inherits from Jam and was designed
to meet the specific requirements of the Boost C++ library, but Boost.Build
can be applied to non-Boost applications as well. It specializes in very
portable building of C++ code, including non-UNIX platforms (where the
otherwise very portable GNU autotools fail). It has built-in support for
C++, C and Fortran, and toolsets for other languages can be added. It is
currently (since 2007) under refactoring to use python as its makefile lan-
guage (following the example set by SCons).

gqmake qmake is a makefile generator, tailored to support the development
of Qt projects but is extensible to support other languages as well.

3.1 Parallel builds

As touched upon in the classical [3], recursive make does not play well with
parallel building because it sets up artificial boundaries between directories.
GNU autotools-based implementations usuallly deal with this® by processing
subdirectories one at a time (i.e., sequentially) in a user-given, well-defined
order which respects dependencies, but the contents of each directory is pro-
cessed in parallel. For example, in the extreme case with one file per directory,
a per-directory parallel build is just a serial build. Other build technologies
(CMake, SCons, ...) support true parallel builds by having a global view on
dependencies, where directory boundaries is a non-issue.

Here an estimate of the cost of per-directory parallelism compared to true
parallelism (back of the envelope, all other things being equal): For a project

3although non-recursive Makefile.am’s are possible.

10

with M source files distributed over D directories, a per-directory parallel
build with N parallel build threads will get a “penalty” per directory bound-
ary (because less than N processors are in use), which is equivalent to extra
(N —1)/2 source files in a truly parallel build. Hence the overall processing
time is proportional to (M + D(N — 1)/2)/N, where a truly parallel build
takes time M /N (making the assumptions that source files take equally long
to compile, and are randomly distributed modulo N in subdirectories). The
figure shows the speed (inverse time) of the two types of parallel builds, com-
pared to a sequential build, when plugging in numbers relevant for CASA’s
C++ code, M = 1646, D = 128. Conclusion: Parallel builds are much
faster than serial builds (which is hardly a surprise), and there is not much
difference between the two types of parallel builds at least up to 8 CPU cores.

13

Parallel
Parallel per directory
Serial

16 |

14}

12F

1ok

Processzing speed

2 4 E g 10 12 14 1E
Mumber of CPU cores

3.2 Discussion

I received only few recommendations about particular technologies, which
were to prefer GNU make. More frequent was “something widely used rather
than something less widely used”. The most frequent view was “whatever
works”.

11

CBS + configure. An approach to solving R4 is to add a configuration
step to the CBS. This could be achieved by updating/reimplementing the ex-
isting install /configure script, or (more in line with R7) by using autoconf to
generate a correct makedefs file*. This would solve a big problem. It would
not solve the problem of having a build mechanism which does not honor
the dependencies between files, takes manual intervention to use (R8), and
is slow compared to alternatives (R12). If I could solve these file dependency
problems in the CBS (which is not a given fact), we would still be using a not
widely-used technology (the ATPS++ makefiles), which has proved for some
time to be difficult to maintain and fix. Solving the (less critical) issues R13
and R16 would probably require major rewrites. The CBS is demonstrating
how difficult it is to implement a robust, efficient and correct build system
using GNU make. In the years after the AIPS++ makefiles were written,
immense amounts of thought and man-power has went into solving the highly
non-trivial problem of building software. It is better economy to reuse this
knowledge and products, instead of trying to do something ourselves, which
will never be half as good.

No technology is a silver bullet. The success of any implementation depends
on how well the makefiles are written. The essential difference between the
CBS and the alternatives is the difference between using raw make and suffer-
ing from it, compared to reusing a higher level toolkit closer to our problem
domain.

A good reason to stay with the CBS is to avoid the risk of switching technolo-
gies mid-run. Much of that risk can be eliminated by pre-emptive planning
and testing.

Most of the technologies considered have automatic dependency tracking,
support unit testing, support generated code, built-in support for C, C++,
Fortran and Python, extensible to support other languages, are portable,
support parallel builds. I think the open issues R4, R7, R8, R12, R13, R16,

4Note that while automake cannot be used without autoconf, WCSLIB is an example
of autoconf being used without automake

12

R20 are solvable using any of the general-purpose tools.

A CSMakefiles do not seem ideal for CASA’s needs. They are not widespread.
Portability is not a major concern for ALMA software which must run on
a standard machine. It has no configuration step, the location of external
libraries are hard-coded in application level makefiles. Being based on raw
make, it has a few quirks, does not always rebuild the code correctly, for
example developers sometimes must clean up the $INTROOT installation
directory and install from scratch (although speaking as someone who has
tried both build systems, I have found it much more robust than the CBS).

Being very wide-spread and a proven technology, the GNU autotools is
an obvious candidate to consider. A common criticism is its convoluted tool
chain involving Makefile.am/sh/m4/Makefile languages, which can make au-
totools based implementations difficult to understand and debug, and to do
“simple” things like adding a new dependency library.

Compared to the autotools, CMake is conceptually simpler; it uses just
a single CMakeLists.txt macro language, and makefiles are generated only
from these files. It supports true parallelism and has good performancel5].
It is newer and less wide-spread than the autotools, for example flex/bison
support was added only as of November 2009.

That SCons is already in use by CASACore, is based on the same scripting
language as CASA, and that prototype work was done already [6] makes it
relevant to consider for CASA non-core (in addition to being a modern, gen-
eral purpose build tool). SCons may have a disadvantage of appearing more
alien to typical CASA developers, compared to a make-based build system;
on the up-side it does not suffer from the problems of make ([4]). While
python is an interesting and modern choice for a makefile language, I am
personally not convinced that it is an ideal makefile language, or any better
than a tailored, domain-specific language. SConstruct files implementation
and syntax tends to be more verbose than the alternatives. Moreover, the
great power of a general purpose programming language might tempt the
makefile implementer to “hack away” and implement whatever does the job,
where other build systems that provide only a minimum set of functionality,
will force the user to pick the solution that was intended for the particular
job. SCons has a reputation of being slow. According to CASACore’s main-

13

tainers SCons has no good support for “install” targets.

[experimented with building shared libraries and executables using Boost.Build.
The makefile syntax, recycled from Jam, has a few quirks (something about
spaces before semi-colons). After studying the available documentation for
some time, it was not clear to me how to detect external libraries with
Boost.Build (which may be a limitation of the build system, or on its doc-
umentation, or on my understanding, but in any case a concern). It is my
impression that Boost.Build is more a “portable make” than a full build sys-
tem.

Ant was not initially designed to be a general purpose build system, and
uses verbose XML as its makefile syntax. It integrates well with CruiseCon-
trol. The AntContrib C++ extension does not seem to be widely used for
C++ projects. qmake was not initially designed to be a general purpose
build system. I have not investigated these technologies further.

Comparing the various technologies with the list of requirements for CASA,
I find that CMake provides most closely what we need (followed by GNU
autotools and possibly SCons), also taking into account ease of implemen-
tation, ease of use and future maintenance. CMake is very similar to the
autotools, but slightly better performing according to benchmarks (I think,
mostly due to better caching of configuration results), and with a simpler
tool chain. CMake’s main disadvantage is that it is less widespread than
the autotools, but it is used by large non-trivial projects with requirements
on portability, MySQL and KDE, so lack of maturity does not seem to be
a real concern. Emacs and Eclipse have support for CMake. I have found
that adapting built-in CMake macros is simpler than doing the same with
autotools. CMake ships with a number of package finders macros (equivalent
to the autoconf macro archive), which appears to be somewhat of a random
“z00”. If a certain macro (such as FindBLAS, which does the job of detect-
ing the BLAS library, then sets up internal build variables) does not match
exactly CASA’s needs, it can be easily extracted from CMake’s internals and
tweaked as desired.

14

4 Solution

The following actions are meant to solve all of the open requirements. This
is based on adopting CMake as build technology (but most of what follows
is rather independent of a particular technology). The actions are listed in
order of implementation. FEach action is labeled critical or non-critical as
a function of the requirement(s) it addresses. Table 1 gives an overview of
requirements and actions.

15

Table 1: List of requirements, their importance (according to no well-defined
metric), whether each requirement is already satisfied, and the action(s) solv-
ing the open requirements.

Requirement Priority Satisfied Action
R1 Portability critical yes (A3)
R2 Documented build proce- | critical no A5 Monitor builds
dure
R3 Dependency packages flexi- | non-critical | yes/no* | A8 Distribute external
ble location packages as source
R4 Verify external packages critical no A4 CMake configuration
R5 Debug builds critical yes (A3)
R6 Documentation build non-critical | yes (A3)
R7 Widely used technology critical no® A3 CMake build system
R8 Simple/correct builds critical no A3 CMake build system
R9 One build method non-critical | no Al Use SCons
R10 Work per module non-critical | yes (A1, A3)
R11 Unit test data non-critical | yes (A3)
R12 Faster builds critical no A3 CMake build system,
A1l Clean up code tree
R13 Out-of-source builds non-critical | no (A3)
R14 Release structure non-critical | no A7 Revisit release con-
tents
R15 Better unit test coverage non-critical | no A9 Implement unit tests
R16 Modular UT framework non-critical | no A3 CMake build system
R17 Identify version non-critical | no A2 Redefine build num-
ber
R18 Build only good versions critical no A6 Build server tests
R19 Synchronize uncommitted | non-critical | yes
changes
R20 Keep intermediate object | non-critical | no A3 CMake build system
files
R21 External package runtime | non-critical | no A10 Runtime version num-

version numbers

ber checks

“Yes: because the package location can be configured in makedefs.

are distributed as RPMs (Linux) and 3rd-party tar ball (Mac).
®The current build system is built upon GNU make which is certainly widespread. The infras-
tructure of included makefiles from code/install/makefile.* is not widely used.

16

No: because some packages

4.1 Actions

A1l (non-critical) Use one tool for compiling CASACore. I do not
have strong feelings about which build tool (GNU make or SCons) to use,
but we CASA developers should try to be consistent if we want consistent
behaviour. To the extent that it does the job, I would suggest using SCons
because it is used by CASACore’s maintainers, so the maintenance is easier,
and we are more likely to get the same behaviour as the authors intended.
This is an action on developers and on how Linux/Mac distributions are
created. It addresses R9. Of course, developers can always go their own
ways, but in that case they should be aware of the risk of breaking things for
other developers who use the standard build tool.

A2 (non-critical) Avoid confusion between the build number and
code revision number. The build number should be either (TBD) rede-
fined to be identical to the code revision number, or it should follow a very
different numbering scheme (such as 1, 2, 3, ... or A, B, C, ...) in order to
make it clearly different from the code revision number. This action solves
R17.

A3 (critical) Implement CMake build system for CASA non-core.
The CMakeLists.txt files must contain the correct dependencies. Parallel
builds must work. It must be possible to build documentation for CASA.
This will solve R7, R8, R12, R16, R20 (and not break R1, R5, R6, R10, R11,
R13). CASACore’s build system will not be touched.

A4 (critical) Implement configuration step. Checks should be made
for external library locations and version numbers. External paths should be
configurable. This will solve RA4.

A5 (critical) Monitor the builds. Automatic daily/nightly/continous
builds is one of the software engineering best practises. We currently have
automatic builds (that I am aware of) in Socorro and in Garching. Garch-
ing results are published at http://www.eso.org/ dpetry /nightly-sneeze.log,
AOC results are available for developers with NRAO accounts who know
where to look. They run once per day, on machines with a history as such
may not always be reproducible. Mac builds are not monitored. The results

17

of building earlier revisions are not available.

A build server will be set up to monitor the active and stable branches by
checking out the latest updates and do an incremental build. Results will
be published for all supported platforms. If hardware resources allow, every
revision of the code will be built®. Some form of notification will be enabled
(exact form TBD), so that introduced compilation errors can be resolved as
soon as possible. This action will ensure that our code is more often in a
compilable state. In addition, developers will be able to distinguish local
build issues from global ones.

Less often (TBD) and in addition to incremental builds, complete builds from
scratch will happen. Repeating a full build on the same machine is problem-
atic because later builds may interact with previous installations (after you
install CASA once, the machine is “tainted” forever). For maximum repro-
ducibility, the builds from scratch will reuse a virtual machine snapshot of
a virgin machine (such a prototype setup exists already using Hudson and
VMware. A side-effect of automatic builds from scratch is a script which
also serves to document the exact sequence of build steps, on every sup-
ported platform. The installation documentation must be extracted from
this script. Obsolete build information that has accreated must be deleted.
This solves R2. The documentation must include how to build and run the
unit and regression test suites.

A6 (critical) Run test suite as part of monitoring the build. After
doing a full build, the build server will execute the subset of regression tests
that define if a given version of the active/stable branches are “good enough”
for dispatching. If the acceptance tests passed, the given version of the
source code will get an “approved”-stamp. Implementation details are TBD,
but possibly by defining SVN tags which always point to the latest “good”
revisions. The build machine at AOC would then check out and build these
particular tags. This action solves R18.

5Given CASA’s recent history with around 10 new revisions per day and three sup-
ported platforms, this is feasible as long as the time for an incremental build is less than
24h/(3 x 10) ~ 1h.

18

AT (non-critical) Revisit release contents. Releases should include
header files and have same directory structure as the development environ-
ment, which will solve R14. An option is to use CPack (which is part of
CMake).

A8 (non-critical) Document how to install all packages from source,
so that developers do not require RPM / tar ball. The action is to
identify which external packages we modify, and document how to build and
install them. A non-RPM build chain (which does not install pre-compiled
packages but compiles everything from the sources) could be exercised by the
build monitoring system. This would solve R3.

A9 (non-critical) Implement more unit tests. The unit tests should
be monitored as part of the automatic builds. Unit tests could be included
in the acceptance test suites for the active/stable branches (see A6). This
will solve R15.

A10 (non-critical) Implement run-time checks of external package
version numbers. A warning (not error) must be displayed, if it is not
a supported version number. It should be possible to list external libraries
versions. This solves R21.

A1l (non-critical) Clean up source code tree. It is my experience
that our code tree carries a significant amount of dead-weight, in form of
deprecated code that should no longer be used, and “new” prototype code
which was never adopted. In the context of building, less code implies faster
builds (R12). There might be better reasons (maintenance) for cleaning up.
It is not obvious how to implement this action.

This concludes the list of proposed actions. Note that the following top-
ics are not covered:

e Except that the build system must have better support for unit testing
(R16), the details of which tests to be done at which stages (for example
when declaring an active/stable branches version “good enough”) is left
open. (It is a parallel, ongoing effort to look into testing in general.)

19

e The details of setting up a development environment (except R2 that it
must be better documented). I think the current scheme of distributing
external packages as RPMs etc. works well enough, as long as CASA’s
build system itself is sufficiently robust (R4).

e There are no requirements or actions related to ASAP.

4.2 Implementation

This section describes how the proposed actions can be implemented.

Al and A2 can be implemented right away. The new major developments
A3, A4 and A5, will be developed on a branch starting from a “good” ref-
erence version of the stable branch. The following (internal) milestones are
foreseen

e Create CMakeLists.txt for building casapy and other executables using
hard-coded paths to external packages,

e Create CMakeLists.txt for building CASA’s documentation,

e Implement configuration step (A4)

e Same unit test® results compared to the CBS on all platforms,
e Same regression test results as the CBS on all platforms,

e Create release distributions and verify the regression tests using the
distros.

e Verify that GUIs work in releases on all platforms.

The automatic build server (A5) will be setup in parallel with these steps,
and will also serve to test the new vs. old build systems (which would be a
pain to do manually).

After these steps are complete (using a frozen version of the code), the new
build system will be merged back to the stable branch and re-synchronized
with any changes to the build configuration that happened inbetween. The

6This refers to the existing C++ unit tests.

20

relevant tests (unit, regression and GUI) will be reverified post-merge. The
new build system will be copied to the active branch (where tests cannot be
reverified). It is very desirable if the new build system can be implemented
without changing the source code in a backwards incompatible way, so that
the two build systems can live side by side on the same SVN branch’

4.2.1 Roll-out

Dispatching a new build system is a delicate operation that needs to be
thought about well in advance.

Until this point, all developments and testing could have involved just one
person (although T might ask for help for creating distros and for testing
GUIs). The next step is to manufacture the relevant developer’s documen-
tation, and ask volounteers to try out the new build system. This test-
ing/evaluation by other developers should cover geographical sites and plat-
forms. Once no more problems are found, the new build system is declared
operational, and everyone starts to use it.

Beginning of operation will have a period (maybe 1-2 weeks) where both
build systems live in parallel (and as such need to be maintained in parallel).
After no critical problems are found in this period the switch is done.

In my opinion, we should aim to not have a lengthy limbo period with two
parallel build systems, because that will just be a(nother) source of confusion
and unreproducible behaviour. Rather, it should be defined upfront what are
the criterions for acceptance, and when these criterions are fullfilled, do the
switch.

Of the remaining actions, only A6 depends on A5 having been already im-
plemented. The non-critical A7 to A1l can be implemented anytime, not
necessarily by the author of this document and independent of a new build
system.

"Post-CMake-implementation note: It was possible to make the CMake build system
backwards compatible to the source code. But at the cost of adding a bit of complexity
to the build system (which will be simplified, when CBS must be no longer supported by
the source code).

21

4.3 Maintenance

Any build system needs maintenance. I foresee no significant changes com-
pared to currently.

Unlike now, the makefiles (CMakeLists.txt) will mention explicitly every
source file that is part of the build. Therefore, whenever a source file is added
or removed, the CMakeLists.txt must be maintained accordingly. CMake
supports globbing (picking up anything that looks like a source file); it is an
implementation decision whether to use file globbing in makefiles, or list files
explicitly. After a change to a CMakeLists.txt, a run of cmake is automati-
cally triggered as a dependency of make (when GNU make is the backend).
It is a disadvantage of the globbing behaviour that, after a source file has
been added or removed, the user would need to remember to invoke cmake
in order to get a correct build (thus not satisfying R8, that the build should
be driven by a single, well-defined command). See [7] for more discussion on
this topic.

When a dependency on an external package changes, the appropriate CMake-
Lists.txt must be changed accordingly. For example, if a change is made to
CASACore that is not backwards-compatible to previous versions of CASA
non-core, the version number of CASACore must be incremented®, and CASA
non-core’s version dependency must be incremented accordingly.

4.4 Usage

The starting point for CMake documentation is www.cmake.org. In short,
CMake itself is installed by unpacking the distribution, then

> ./bootstrap && make && sudo make install

where the bootstrap script accepts a —prefix parameter if you want to install
CMake to somewhere else than to /usr/local.

Then to compile CASA non-core, do

> mkdir code/build

8CASACore does not already support such fine-grained version numbers, and that
feature will be added.

22

> cd code/build
> cmake ..
> make

This will create an out-of-source build (where the name and location of the
build directory is up to the developer). In-source builds are possible, if you
do not care about putting build products in the source code tree.

4.4.1 Per-module development

In order to develop in a single source tree directory (R10), build from the
corresponding subdirectory in the build tree

> <edit> code/sub/directory/source.cc
> cd code/build/sub/directory
> make

4.4.2 Configuring the build

Options to configure the build can be given on the command line when in-
voking CMake, for example:

> cmake -DCMAKE_BUILD_TYPE=Debug ..

Notice that a change of CMake configuration parameters causes existing ob-
ject code to be considered out of date (which is similar to how SCons work,
and different from GNU autotools’ behaviour). In order to build different
parts of the system with different compilation options, one can do:

cd build

cmake -DCMAKE_BUILD_TYPE=Debug ..
make synthesis

cmake -DCMAKE BUILD_TYPE=Release ..
make calibration

V V V V V

which will build the module synthesis with debugging information enabled,
and calibration with optimizations enabled.

As an alternative, build options can be set interactively by using a curses
interface for CMake called ccmake:

23

> ccmake ..
CMake supports backends other than GNU make, e.g. Xcode on Mac:
> cmake -G Xcode ..

Note, that it is not required to edit any checked in files, in order to configure
the build.

4.5 Possible issues
The CBS uses subdirectory names to determine, how code in a given subdi-
rectory should be handled, e.g.

code/<module>/implementation
code/<module>/apps
code/<module>/fortran

for C++ libraries, executables and Fortran code, respectively. Symbolic links
are defined from the directory

code/include/
to each
code/<module>/implementation

which allows source code #include directives to not mention explicitly the
implementation directory. It may be necessary to follow in the footsteps of
CASACore and rename the implementation directory to

code/<module>/<module>

(or create a directory link with this name to the implementation directory.
It would be backwards compatible with the CBS.)

Post-CMake-implementation note: It was possible to overcome this issue
by making the CMake build system do the same as CBS (which is to create
symbolic links at configuration time).

References

[1] SCons Wiki: SConsVsOtherBuildTools,
http://www.scons.org/wiki/SconsVsOtherBuild Tools?

9All hyperlinks as of 2010.01.04.

24

2]

Adrian Neagu: Make alternatives,
http://freshmeat.net/articles/make-alternatives

Peter Miller: Recursive Make Considered — Harmful,
http://miller.emu.id.au/pmiller /books/rmch

Adrian Neagu: What 18 Wrong with Make?,
http://freshmeat.net /articles/what-is-wrong-with-make

Johan Boulé: Benchmarks of warious C++ bwild tools,
http://psycle.svn.sourceforge.net /viewve/psycle/branches/bohan /wonderbuild /
benchmarks/time.xml

Bojan Nikolic: Building CASA,
http://www.mrao.cam.ac.uk/ bn204/alma/sweng/casabuild.html

GNU automake manual: Why doesn’t Automake support wildcards?,
http://sources.redhat.com/automake/automake.html#Wildcards

25

