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Motivation

• Modern data acquisition systems have to cope with
ever-increasing data rates (think SKA!)

• Shannon sampling theorem: perfect reconstruction for
bandlimited signals if sampling rate ≥ 2× bandwidth

• BUT we frequently compress the data straight after
sampling... (e.g. JPEG in a digital camera)

• Is it possible to sample at the signal’s “information rate”
instead of the usually much higher Nyquist rate?

• YES (Shannon was a pessimist)



The CS Sampling Process

• Generalise sampling to a series of linear measurements
• Each measurement contains contributions from each part

of signal, instead of being localised, in the same way that a
visibility sample is affected by all parts of image domain

• Each measurement of N-dimensional discrete signal x has
the form yi = 〈x, φi〉, where φi is an N× 1 basis vector

• A set of M measurements (one per basis vector) can be
written in matrix form as

y = Φx,

where the M×N measurement matrix Φ has φi as rows
• For standard (Dirac) sampling, M = N and Φ = I (i.e. the

basis vectors are the standard unit vectors)



Sensing Sparse Signals

• Question: Can x be reconstructed from y even if M� N?
• Surprising answer: Yes, with high probability, as long as x

is S-sparse (i.e. it has exactly S non-zero entries), and
S < M, and Φ has certain properties

• Compressible signals are sparse in some domain — they
can therefore always be subsampled!

• In theory, M should be more than O(S log N) for perfect
reconstruction

• In practice, 3S to 5S measurements are sufficient



Why Does It Work?

• For arbitrary x and M� N, recovery is impossible

y xΦ=

=

M× N

M
measurements

N-dim signal

information loss

• An S-sparse signal selects S columns at random from Φ

• Restricted isometry property (RIP): If any S columns of Φ

are approximately mutually orthogonal, perfect
reconstruction is possible for arbitrary S-sparse x
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Why Does It Work?

• For arbitrary x and M� N, recovery is impossible
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The Measurement Matrix Φ

• Random matrices (with zero mean) typically have RIP
with high probability

• Compressed sensing therefore projects the desired signal
onto a few random basis functions, instead of many
shifted impulses

• Good choices for Φ include:
• Gaussian matrix with i.i.d. normal random entries
• Bernoulli matrix with i.i.d. Bernoulli random entries
• Partial Fourier matrix with rows drawn at random from

DFT matrix (random frequencies)

• Orthogonal change of signal basis preserves RIP of Φ: CS
still works if signal x is not sparse itself, but its orthogonal
transform is (consider natural images and wavelet domain)



CS Showcase: The Single-Pixel Camera

Picture courtesy of http://www.dsp.ece.rice.edu/cscamera/

• How to make a megapixel image using only a single-pixel
sensor and no raster scanning . . .

http://www.dsp.ece.rice.edu/cscamera/


Reconstruction Algorithms

Various classes of CS algorithms exist, of which the most
popular are:

• Convex relaxation (BP, ...)
• Greedy methods (MP, OMP, ROMP, StOMP, CoSaMP, ...)
• Iterative thresholding (IST, TwIST, ...)
• Combinatorial algorithms (chaining pursuit,

Heavy-Hitters on Steroids (HHS), ...)
• Bayesian methods (CS ≡MAP with Laplacian prior...)



Convex Relaxation

• Sparsity measured by `0 norm ‖x‖0, which is the number
of non-zero elements of x

• Ideal sparse reconstruction minimises ‖x‖0 while being
consistent with the measurements Φx = y

• This is intractable, so use next best norm instead, which is
the `1 norm ‖x‖1 = ∑N

i=1|xi| (convex relaxation of `0)
• `1 minimisation promotes sparsity, while `2 minimisation

(least-squares) discourages it... That is why pseudoinverse
solution to CS problem, xPI = Φ†y, is a bad idea



Convex Relaxation: Basis Pursuit (BP)

• This directly solves the convex optimisation problem

[eq] min
x
‖x‖1 subject to Φx = y

• For noisy measurements, change to one of

[ineq] min
x
‖x‖1 subject to ‖y−Φx‖2 ≤ ε

[regls] min
x

(
‖y−Φx‖2

2 + γ‖x‖1
)

[dantzig] min
x
‖x‖1 subject to ‖ΦT(y−Φx)‖∞ ≤ ε



Convex Relaxation: Basis Pursuit (BP)

• The regls version is least-squares with `1 regularisation
• Convex optimisation is easy: single global optimum and

efficient algorithms available (e.g. interior-point methods)
• Easy to add constraints such as non-negativity of x (BP+),

as long as convexity is preserved
• Computational complexity O(M2N1.5) — slow in practice,

which opens the door for greedy methods



Greedy: Matching Pursuit (MP)

• Views recovery problem as finding a sparse representation
for the M× 1 measurement vector y = ∑N

j=1 xjϕj, based on
the columns ϕj of Φ (i.e. only a few xj terms are non-zero)

• MP terminology: Φ is dictionary of atoms ϕj

• Greedy, iterative approach:
• Initialise residual r(0) = y
• At kth iteration, select atom which fits residual best, as

ϕ(k) = arg maxϕ|〈r(k),ϕ〉|, which amounts to picking the
peak of |ΦTr(k)|

• Update residual to r(k+1) = r(k) − akϕ
(k), with ak = 〈r(k),ϕ〉

• Stop when residual becomes small enough
• Recovered signal has non-zero entries ak at locations of

selected atoms



Orthogonal Matching Pursuit (OMP)

• This is identical to MP, but adds a least-squares fit step
after selecting a new atom, which readjusts the amplitudes
of all atoms to best fit the data

• In practice, OMP is preferred to plain MP, as it converges
faster

• OMP has computational complexity O(SMN), which is
faster than BP, and it is simpler to code than BP

• Relatively easy to add non-negativity constraint (OMP+)
• A downside is that naive implementation of least-squares

fit requires an M× S matrix, which can be prohibitively
large for large data sets



CS for Radio Astronomy
• Consider simplified imaging equation expressing

visibilities V in terms of image brightness I,

V(uj, vj) =
N

∑
k=1

I(lk, mk)e−i2π(ujlk+vjmk)

• In matrix form it becomes y = Φx, with M visibilities
yj = V(uj, vj), N image pixels xk = I(lk, mk) and
measurement matrix entries Φjk = exp{−i2π(ujlk + vjmk)}

• Natural fit to CS: the interferometer does random
projections for you! (similar situation in MRI)

• Φ related to partial Fourier matrix
• An S-sparse image x containing S point sources can be

recovered via CS as long as there are enough baselines
(M ≥ Const · S log N ≈ 5S) and the uv plane is sampled
randomly enough



Relating RA Terms to CS Notation

• Measurement equation (simplified!):

y = Φx

• Dirty image (where ΦT is conjugate transpose of Φ):

xDI =
1
M

ΦTy

• Dirty beam (where 1 is M× 1 vector of ones):

xDB =
1
M

ΦT1,

• Measurement equation in the image domain:

ΦTy = ΦTΦx
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Relating CLEAN to CS

• Högbom CLEAN is identical to MP, but forms residual in
image space instead of in measurement (uv) space

• The idea of Clark CLEAN to subtract multiple components
in one iteration is echoed in many MP variants, such as
ROMP and StOMP, where it regularises problem and
speeds up algorithm, respectively

• Cotton-Schwab CLEAN actually operates in measurement
(uv) space, like standard MP, but also adds ideas from
Clark CLEAN

• CLEAN loop gain idea not prevalent in MP literature



Relating NNLS to CS

• NNLS is identical to OMP with non-negativity constraint,
but operates in the image domain instead of uv domain,
solving

ΦTy = ΦTΦx subject to x ≥ 0

• This explains the tendency of NNLS to compact flux
• The CS version improves on standard NNLS by operating

directly in uv domain: improved accuracy and greatly
reduced memory usage (M× S instead of N×N)

• Standard OMP is something between CLEAN and NNLS



Experiment

Small-scale simulation:
• Four point sources 4.5 pixels apart in 32x32 image,

i.e. S = 4 and N = 1024 (sources are off-grid...)
• Image pixel size chosen to have 5 pixels across main lobe

of dirty beam (sources are merged...)
• Single VLA A snapshot at declination δ = 35◦ provides

M = 351 measurements
• Noise with SNR of 0 dB added to visibilities (16 dB image

SNR)



Methods tested

Standard algorithms:
• Högbom CLEAN (CASA) with 400 iterations, loop gain 0.1
• Cotton-Schwab CLEAN (CASA) with 400 iterations, loop

gain 0.1
• NNLS (CASA struggled, implemented via OMP+ instead)

CS algorithms:
• OMP, OMP+ searches for 40 components
• BP, BP+ (ineq, regls, dantzig variants)
• Algorithms have explicit measurement matrix version

(fast and correct but memory-limited) and operator
version (uses FFT to jump between image and uv domains)

• Algorithm parameters are tuned based on expected SNR



Results: UV Coverage
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• Typical VLA snapshot coverage (mirroring unnecessary)



Results: Dirty Beam and Image
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• Red circles show positions of true point sources



Results: Close-up of Dirty Beam and
Image
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• A single peak in dirty image . . .



Results: Standard CLEAN
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Hogbom CLEAN model
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Cotton-Schwab CLEAN

• Many spurious components, Högbom only cleans inner
quarter



Results: NNLS
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OMP+ NNLS model (oper)

• Already a big improvement



Results: OMP vs. OMP+
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OMP+ model (oper)

• Non-negativity constraint makes little difference



Results: BP
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Results: BP
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BP model (regls_qp)
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BP model (regls_socp)

• Two different methods to solve regls problem



Results: BP+
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• The dantzig version struggled here



Results: BP+
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• Two different methods to solve regls problem



Conclusions

• Compressed sensing forms a mathematical framework for
both CLEAN and NNLS, and allows for many extensions

• NNLS apparently improves on CLEAN due to the
least-squares step of OMP, rather than due to
non-negativity constraint

• CS looks promising for VLBI (small N, big D)



Future Work

• Improve convergence of BP solvers based on operators
• Perform larger-scale experiments (already possible)
• Integrate with curvelet transform for extended sources
• Extend CS ideas to w-correction and full measurement

equation
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