# Image reconstruction using Compressed Sensing

#### Anna Scaife

Yves Wiaux, Laurent Jacques, Gilles Puy & Pierre Vandergheynst

CALIM09 31/03/09







## **Outline**

- Formulating Compressed Sensing
- 2 Applications
- 3 Conclusions

## Deconvolution

#### **CLEAN**

- Local iterative deconvolution
- Matching Pursuit
- Implicitly implies sparsity

#### MEM

- Global minimization problem
- Assumes an entropic prior

Both methods are flexible enough to consider a variety of bases (Dirac, wavelet etc)



# Sparsity

- The main premise of CS is that although our signal is not necessarily sparse in real space or Fourier space, it is sparse or compressible in *some basis*.
- If we consider a real signal  $x = \{x_i\}_{1 \le i \le N}$
- and define a real basis  $\Psi = \{\Psi_{i\omega}\}_{1 \le i \le N : 1 \le \omega \le T}$
- Then we can say that the decomposition  $\alpha = \{\alpha_{\omega}\}_{1 \leq \omega \leq T}$ .  $\mathbf{x} = \mathbf{\Psi} \alpha$

 ...is spare or compressible if it contains only K << N</li> non-zero or significant co-efficients.



- If we then probe the signal using m real linear measurements (visibilities)  $y = \{y_r\}_{1 \le r \le m}$  in some sensing basis  $\Phi = \{\phi_{ri}\}_{1 < r < m; 1 < i < N}$
- and these measurements are possibly affected by some independent and identically distributed noise:
   n = {n<sub>t</sub>}<sub>1 < t < m</sub>, so that:

$$y = \Theta \alpha + n$$
, where  $\Theta = \Phi \Psi \in \mathbb{R}^{m \times T}$ 

# Restricted Isometry

- Defining the  $\ell_p$  norm,  $||u||_p = \left(\sum_{l=1}^Q |u_l|^p\right)^{1/p}$ .
- By definition the matrix  $\Theta$  satisfies a RIP of order K if there exists a constant  $\delta_K <$  1 such that

#### The RIP

$$(1 - \delta_K)||\alpha_K||_2^2 \le ||\Theta \alpha_K||_2^2 \le (1 + \delta_K)||\alpha_K||_2^2$$

# Satisfying the RIP

- The incoherence of the sensing matrix Φ with the sparsity basis Ψ will satisfy the RIP if the number of measurements (m) is large enough relative to the sparsity K.
- For radio interferometry the RIP is satisfied if

$$K \leq \frac{C m}{\mu^2 \ln^4 N}$$
.

•  $\mu$  is the mutual coherence of the elements of the Fourier basis and the elements of the sparsity basis:

$$\mu = \sqrt{N} \max |\langle \phi_e | \psi_{e'} \rangle|.$$



## **Basis Pursuit**

• the  $\ell_1$  norm of the vector  $\alpha$  is simply the sum of the absolute values of the vector components:

$$||\alpha||_1 = \sum_{\omega=1}^T |\dot{\alpha}_{\omega}|.$$

→ Laplacian Prior



## The Optimization Problem

$$\min ||\alpha'||_1 \text{ s.t. } ||y - \Theta \alpha'||_2 \le \epsilon$$



# Recovery

If the solution of the BP is  $\alpha^*$  then the corresponding recovered signal is

$$\mathbf{x}^* = \mathbf{\Psi} \, \alpha^*$$
.

#### Solutions

- CS shows that if  $\Theta$  satisfies a RIP of order 2K with  $\delta_{2K} < \sqrt{2} 1$  then the solution  $x^*$  provides an accurate reconstruction.
- It can be said to be *optimal* in the sense that exactly sparse signals in the absense of noise are *recovered exactly*.
- In the presence of noise very strong stability results are obtained.



## Interferometer Data

- We consider 5 different sets of coverage in *uv* with different % coverage of the Fourier plane
- Two examples:
  - a field filled with multi-variate compact sources
  - a CMB cosmic string signal simulation
- $SNR^{(s,s')} = -20 \log_{10} \frac{\sigma^{(s-s')}}{\sigma^{(s)}}$

# Cosmic Strings

- Topological defects in the CMB.
- ACDM cosmology.
- String signal is well modelled by GGDs in wavelet space

#### **GGDs**

$$\pi_j(lpha_\omega) \propto ext{exp} \left[ - \left[ rac{lpha_\omega}{
ho u_j} 
ight]^{v_j} 
ight]$$

#### s-norm

$$\pi(\alpha) \propto \exp{-||\alpha||_s}$$
  
 $||\alpha||_s \equiv \sum_{\omega} |\frac{\alpha_{\omega}}{\rho u_i}|^{v_j}$ 



## The three methods

BP

$$\min ||\alpha'||_1 \text{ s.t. } ||y - \Theta \alpha'||_2 \le \epsilon$$

 $BP_{+}$ 

min 
$$||\bar{x}'||_1$$
 s.t.  $y = \bar{\Phi}_{ri} \bar{x}'$  and  $\bar{x}' \geq 0$ .

**SBP** 

$$\min ||\alpha'||_s \text{ s.t. } ||\bar{y} - W_{cmb}\Phi_{ri}\Psi_s\alpha'||_2 \le \epsilon$$

# **Compact Sources**







# **Cosmic Strings**







## **SNR**





### Conclusions

- A new framework for image reconstruction in interferometry
- Simple BP provides the same image fidelity as CLEAN
- BP is more rapid than CLEAN in terms of no. iterations and computation time
- Prior statistical knowledge of the signal can greatly improve the reconstruction