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Deconvolution

CLEAN
Local iterative deconvolution
Matching Pursuit
Implicitly implies sparsity

MEM
Global minimization problem
Assumes an entropic prior

Both methods are flexible enough to consider a variety of bases
(Dirac, wavelet etc)
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Sparsity

The main premise of CS is that although our signal is not
necessarily sparse in real space or Fourier space, it is
sparse or compressible in some basis.
If we consider a real signal x = {xi}1≤i≤N

and define a real basis Ψ = {Ψiω}1≤i≤N;1≤ω≤T

Then we can say that the decomposition α = {αω}1≤ω≤T .
x = Ψα

...is spare or compressible if it contains only K << N
non-zero or significant co-efficients.
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If we then probe the signal using m real linear
measurements (visibilities) y = {yr}1≤r≤m in some sensing
basis Φ = {φri}1≤r≤m;1≤i≤N

and these measurements are possibly affected by some
independent and identically distributed noise:
n = {nr}1≤r≤m, so that:

y = Θα+ n, where Θ = Φ Ψ ∈ Rm×T
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Restricted Isometry

Defining the `p norm, ||u||p =
(∑Q

l=1 |ul |p
)1/p

.

By definition the matrix Θ satisfies a RIP of order K if there
exists a constant δK < 1 such that

The RIP

(1− δK )||αK ||22 ≤ ||ΘαK ||22 ≤ (1 + δK )||αK ||22
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Satisfying the RIP

The incoherence of the sensing matrix Φ with the sparsity
basis Ψ will satisfy the RIP if the number of measurements
(m) is large enough relative to the sparsity K .
For radio interferometry the RIP is satisfied if

K ≤ C m
µ2 ln4 N

.

µ is the mutual coherence of the elements of the Fourier
basis and the elements of the sparsity basis:

µ =
√

N max |〈φe|ψe′〉|.
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Basis Pursuit

the `1 norm of the vector α is simply the sum of the
absolute values of the vector components:

||α||1 =
∑T

ω=1 |αω|.

→ Laplacian Prior

The Optimization Problem

min ||α′||1 s.t. ||y −Θα′||2 ≤ ε

Anna Scaife Image reconstruction using Compressed Sensing



Formulating Compressed Sensing
Applications
Conclusions

Recovery

If the solution of the BP is α∗ then the corresponding recovered
signal is

x∗ = Ψα∗.

Solutions
CS shows that if Θ satisfies a RIP of order 2K with
δ2K <

√
2− 1 then the solution x∗ provides an accurate

reconstruction.
It can be said to be optimal in the sense that exactly sparse
signals in the absense of noise are recovered exactly.
In the presence of noise very strong stability results are
obtained.
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Interferometer Data

We consider 5 different sets of coverage in uv with different
% coverage of the Fourier plane
Two examples:

1 a field filled with multi-variate compact sources
2 a CMB cosmic string signal simulation

SNR(s,s′) = −20 log10
σ(s−s′)

σ(s)
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Cosmic Strings

Topological defects in the CMB.
ΛCDM cosmology.
String signal is well modelled by GGDs in wavelet space

GGDs

πj(αω) ∝ exp
[
−

[
αω
ρuj

]vj
]

s-norm
π(α) ∝ exp−||α||s
||α||s ≡

∑
ω |

αω
ρuj
|vj
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The three methods

BP
min ||α′||1 s.t. ||y −Θα′||2 ≤ ε

BP+

min ||x̄ ′||1 s.t. y = Φ̄ri x̄ ′ and x̄ ′ ≥ 0.

SBP
min ||α′||s s.t. ||ȳ −WcmbΦriΨsα

′||2 ≤ ε

Anna Scaife Image reconstruction using Compressed Sensing



Formulating Compressed Sensing
Applications
Conclusions

Compact Sources
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Cosmic Strings
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SNR
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Conclusions

A new framework for image reconstruction in interferometry
Simple BP provides the same image fidelity as CLEAN
BP is more rapid than CLEAN in terms of no. iterations and
computation time
Prior statistical knowledge of the signal can greatly
improve the reconstruction
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