UNIT TESTS OF CASA TASKS
vli4
2010-06-02

Comments/questions: Sandra Castro

This document briefly describes how to implement the framework to run unit
tests (UT) for CASA tasks. The unit tests use PyUnitl!], which is the standard
Python unit tests framework. It is implemented by importing the module
unittest. The tests are executed using nosel?], which is implemented by importing
nose.

Existing unit tests:

A list of existing scripts already perform unit testing of tasks and have been
selected to run with the UT framework. They have been converted to PyUnit and
will be separated from the existing end-to-end (e2e) tests. See the list at the end
of this document.

New unit tests:

They are located under code/xmlcasa/scripts/tests. They have been separated
from the e2e tests to avoid confusion. The e2e tests remain located under
code/xmlcasa/scripts/regressions. New unit tests should be named
test_taskname.py.

Running unit tests:

The unit tests are meant to be called from outside a casapy session, but calling
from inside casapy is also possible. The main script to run is runUnitTest.py
located in $CASAPATH.split()[0]/code/xmlicasa/scripts/regressions/admin. The
UT framework will search for tests located in
$CASAPATH.split()[0]/code/xmlcasa/scripts/tests.

NOTE: If the tests are ready to run automatically using Hudson, they should be
added to the list in
$CASAPATH.split()[0] /code/xmlcasa/scripts/tests/unittests_list.txt.

1) Get the usage information.

casapy —c runUnitTest.py --help

2) Run the unit tests of task clean. It will run all test methods from all classes.

casapy —c runUnitTest.py test clean

3) Run only test2 and test23 from clean’s unit tests. The names of specific tests

are given as a list after the test name. There is no space between the test name
and ‘[".

casapy —c runUnitTest.py test clean[test2,test23]

4) Run test_r_r_1 from test_report, test5 from test_clean and all tests of test_imfit
and test_plotants.

casapy —c runUnitTest.py test report[test r r 1] test imfit
test clean[test5] test plotants

5) Run all the unit tests available. This option will run all the tests defined in the
file SCASAPATH.split()[0] /code/xmlcasa/scripts/tests/unittests_list.txt.

casapy —c runUnitTest.py
6) Run only a short list of unit tests.
casapy —c runUnitTest.py --short
7) Run the tests defined in a text file. The list should contain one test per line.

casapy —c runUnitTest.py --file ListofTests.txt

8) List all the tests available in unittests_list.txt.

casapy —c runUnitTest.py --1list
8) Run a test inside casapy.

CASA <1> : sys.path.append(os.environ["CASAPATH"].split()[0] +
'/code/xmlcasa/scripts/regressions/admin’)

CASA <2> : import runUnitTest

CASA <3>: runUnitTest.main(['test_clean'])

CASA <4>: runUnitTest.main(['test_clean[test4,test22]'])

The framework will report at the end of the run how many tests were executed
with the number of errors and failures, if any. In case of any error or failure, a
traceback is printed on the screen. Any casapy command line option can be given
before the -c option.

When executed, the script runUnitTest.py will create a directory called nosedir
under the current directory. If nosedir already exists, it will be removed. It will
save all the input and output of the tests inside nosedir. An XML file is created
for each run under nosedir/xml. It contains the results of the tests, which can be
displayed using Hudson.

Writing new unit tests:

Create a class which subclasses the unittest.TestCase class. At the beginning of
the class, write variables with the names of the input and output files needed in
the tests. No directory path should be given, only the filename. Write tests as
methods of the main class. Each method should be an independent test. The
framework identifies reserved methods, which are called before and after each
test. Before each test method, a method called setUp will run with instructions to
copy the input data to the current directory. After each test method, a tearDown
method will run to clean up the input and optionally the output files created by
the test. See example 1.

If the test does not need any input data, the setUp and tearDown methods can
be omitted.

Every test method needs to have the prefix test so that the UT framework finds
it. The order in which the tests are executed is not guaranteed, therefore the
tests do need to be independent of each other and of the order they appear in the
class.

Test methods do not get any arguments and do not return anything. It is possible
to have other methods that get and return arguments, which can be called from
inside any test method. In this case, the word test should not be part of the
method’s name. See example 2.

Outside the class, it is mandatory to have a function called suite that returns a
list of the class(es) name(s).

New tests need only to be located in

$CASAPATH.split()[0] /code/xmlcasa/scripts/tests, in order to be executed. If
creating new data files for unit tests, place them in the svn repository under
$CASAPATH.split()[0]+/data/regression/unittest/task_name.

Example 1: unit tests of task clean, using two classes and two different data sets.

import os

import sys

import shutil

from main import default
from tasks import *

from taskinit import *
import unittest

class clean_testl(unittest.TestCase):

Input and output names

msfile = 'ngc7538 utl.ms'
res = None
img = 'cleantest im'

def

def

def

def

def

def

def

def

setUp(self):

self.res = None

default(clean)

if (os.path.exists(self.msfile)):
shutil.rmtree(self.msfile)

datapath = os.environ.get('CASAPATH').split()[0] +
'/data/regression/unittest/clean/"’
shutil.copytree(datapatht+self.msfile, self.msfile)

tearDown (self):

if (os.path.exists(self.msfile)):
shutil.rmtree(self.msfile)

os.system('rm -rf ' + self.img+'*')

testO(self):
'"'"'Test 0: Default values'''
self.res = clean()

self.assertFalse(self.res)

testl(self):

"""Test 1: Wrong input should return False
msfile = 'badfilename'’

self.res = clean(vis=msfile, imagename=self.img)
self.assertFalse(self.res)

mmnn

test2(self):

"""Test 2: Good input should return None
self.res = clean(vis=self.msfile,imagename=self.img)
self.assertEqual(self.res,None)

mmnn

test3(self):

"""Test 3: Check if output exists
self.res = clean(vis=self.msfile,imagename=self.img)
self.assertTrue(os.path.exists(self.img+'.image"'))

mmnn

test4é (self):

'"'"'Test 4: Non-default imagermode mode mosaic’’’

self.res = clean(vis=self.msfile,imagename=self.img,
imagermode='mosaic’)

self.assertEqual(self.res, None)

self.assertTrue(os.path.exists(self.img+'.image'))

test5(self):

"""Test 5: Non-default field value"""

self.res = clean(vis=self.msfile,imagename=self.img,
field='3~-8")

self.assertEqual(self.res, None)
self.assertTrue(os.path.exists(self.img+'.image"'))

class clean_test2(unittest.TestCase):

Input and output names
msfile = 'splitlscan.ms'

res
img

def

= None
= 'cleantest2'

setUp(self):

self.res = None

default(clean)

if (os.path.exists(self.msfile)):
shutil.rmtree(self.msfile)

datapath = os.environ.get('CASAPATH').split()[0] +
'/data/regression/unittest/clean/"
shutil.copytree(datapatht+self.msfile, self.msfile)

def tearDown(self):
if (os.path.exists(self.msfile)):
shutil.rmtree(self.msfile)

def testla(self):
"""Clean la: Non-default mode velocity
retValue = {'success': True, 'msgs': "", 'error msgs': '' }
res = clean(vis=self.msfile,imagename=self.img,
mode='velocity',restfreq='231901MHz")

if(res != None):
retValue['success']=False
retValue['error msgs']=retValue['error msgs']\

+"\nError: Failed to run in velocity mode."
if(not os.path.exists(self.img+'.image')):
retValue['success']=False
retValue['error msgs']=retValue['error msgs']\
+"\nError: Failed to create output image."

Verify if there are blank planes at the edges
vals = imval(self.img+'.image')

size = len(vals['data'])

if (vals['data'][0]==0.0 or vals['data'][size-1]==0.0):
retValue['success']=False
retValue['error msgs']=retValue['error msgs']\

+"\nError: There are blank planes in the edges
of the image."

self.assertTrue(retValue['success'],retValue['error msgs'])

def suite():
return [clean testl,clean test2]

Example 2: tests that do not need data and call a non-test method.

import report
import unittest

class version_test(unittest.TestCase):

def shortDescription(self):
return "Unit tests of comparing version strings"”

def test_fails(self):
assert 2 + 2 == 5

def test_execution_failure(self):
raise Exception("die")

def test_r_r 1(self):
"test revision vs revision"”
a = "CASA Version 3.0.1 (rl10006)"
b = "CASA Version 3.0.1 (r9933)"
self.order (b, a)

def order(self, a, b):
"""Verify that the cmp version function behaves
as it should, given that a is earlier than b"""

assert report.cmp version(a, b) < 0
assert report.cmp version(b, a) > 0
assert report.cmp version(a, a) =

== (
assert report.cmp version(b, b) == 0

def suite():
return [version test]

Note that there is another method called shortDescription, which is also a
reserved method inside the framework. If present in the script, it will display the
short description string for each test, followed by its results. If not present, the
string written between 3-quotes in each test will be displayed instead.

References:
[1] PyUnit documentation, http://pyunit.sourceforge.net/pyunit.html
[2] Nose, http://somethingaboutorange.com/mrl/projects/nose/0.11.1

List of existing scripts that will be used as unit tests:

The following files are located in scripts/regressions/tests:
asdm_import_test

boxit_test

flagdata_test: needs to be finished
imcontsub_test: needs smaller data set
imfit_test

imhead_test

immath_test

immoment_test: needs smaller data set
imregrid_test:

imsmooth_test: needs smaller data set
imval_test

test_task_cvel: Not yet converted.
test_task_exportasdm:

vishead_test

visstat_test:

List of tests that have been converted to PyUnit.

Tests are located in code/xmlcasa/scripts/tests:
test_asdm-import

test_boxit

test_clean: new

test_clearstat
test_exportasdm
test_hanningsmooth
test_imcontsub
test_imfit
test_imhead
test_immath
test_immoment
test_imregrid
test_imsmooth
test_imstat: new
test_imval
test_listhistory
test_plotants
test_plotms: new
test_report
test_smoothcal
test_vishead
test_visstat

