Algorithm Development

S. Bhatnagar
NRAO, Socorro
Requirements

- **EVLA**
 - Full beam, full bandwidth, full Stokes noise limited imaging
- **Algorithmic Requirements:**
 - **PB corrections:**
 - Rotation, Freq. & Poln. dependence, W-term (L-band)
 - **Multi-frequency Synthesis at 2:1 BWR**
 - PB scaling with frequency, Spectral Index variations
 - Scale and frequency sensitive deconvolution
 - **Direction dependent corrections**
 - Time varying PB, pointing offsets, polarization
Time varying gains:

- Field: 3C147
- 11 Antennas, BW=110 MHz
- Integration = 7hrs
- Gain + BandPass Calibration
- Single Baseline based correction
- DR: Peak/OffSource RMS
 - \(~700,000 : 1\)
- Limited by DD errors
 - Due to PB rotation?
 - Errors in the sidelobe

- PB rotationally asymmetric
- PB rotation with PA
- PB scaling with frequency
- Antenna pointing errors
Wide-band Imaging: Error sources

Wide-band power pattern (3 Channels spanning 1 GHz of bandwidth)

Avg. PB Spectral Index (1-2GHz)

Ideal Image

Standard Continuum Imaging

Source spectral variations

PB Effects
Requirements

- **ALMA**
 - Primarily a mosaicking telescope
 - Algorithmic Requirements:
 - **PB corrections:**
 - Imaging with heterogeneous antenna array
 - Rotation, Freq. & Poln. dependence
 - **Direction dependent corrections**
 - Time varying PB, pointing offsets, polarization
 - **Antenna pointing correction likely to be more important**
Dominant PB effects in mosaicking
Priorities and Plan

• Current development driven by EVLA
 • Strong overlap with ALMA requirements
• Narrow field, wide-band imaging (Stokes-I)
 • Ignore PB-scaling with frequency
 • Solve for sky spectral dependence

• Wider field, wide-band imaging (Stokes-I)
 • Correction for frequency dependent PB, PB rotation
 • Solve for sky spectral dependence.
Priorities and Plan

- Current development driven by EVLA

- Full-stokes, wide-band, wide-field imaging
 - Strongest error term: PB polarization
 - Also solve for position and frequency dependent sky polarization

- High dynamic range imaging
 - PB modeling, pointing errors
 - DD effects: Function of time & antenna
Status: Of the algorithms

 - Rotation with Parallactic Angle
 - Linear scaling with frequency to account for wide-band effects
Status: A-Projection (ic2233_regression.py)

Stokes-I

Stokes-V

(10x improvement)
Status: EVLA Imaging

- 3C147 field
- L-Band
- BW = 110 MHz
- 7h integration
- DR ≈ 700,000:1

(Data courtesy: R. Perley)
Status: A-Projection - EVLA Imaging
Status: Of the algorithms

 - Combined Multi-Scale and MFS
 - Sault-Wierenga algorithm a special case

- Tested once for A-Projection + MS-MFS

These data included synthesis runs with VLA A,B,C,D Array at both frequencies. Map has been smoothed to 1 arcsec.
Status: Of the algorithms

- Mosaicking with heterogeneous antennas (in size)
 - Assuming symmetric beams
 - In principle can also handle wide-band case
 - In principle can be combined with MS-MFS

- 7-pointing mosaic at C-band
 - MS-Clean + Mosaicking algorithm used

- More details in talks/demos (George/Kumar)

(Data & Image courtesy: Moellenbrock, Miller-Jones,...)
Status: Of the algorithms

- Stuff still in R&D
 - Pointing SelfCal (pointing_regression.py with simulated data)
 - Correction for pointing errors during imaging
 - Wide-band mosaicking with A-Projection for EVLA

- Wide-band polarization calibration (George's work) (?)
Plan of development

- Integrate A-Projection and MS-MFS
 - PB modeling
- Full-Stokes imaging
 - Extension of A-Projection to full-Stokes
 - Full-Stokes PB models?
 - Extension of MS-MFS to full-Stokes
- Testing of, and integration with Pointing SelfCal/DD-SelfCal
Code development & management

• Needs isolation from active branch

• Proposed solution
 • Separate R&D Branch
 • Check-in often and merge often (active → R&D)
 • Need occasional support for
 – svn merge etc. (active → R&D)
 – Visualization augmentation for R&D needs
 • If possible, make it available for the brave to use
Code development & management

- Full support required
 - In case of change in infrastructure technologies
 - Qt, Dbus, make/cmake/scons/etc.
 - Python
 - Visualization

- Move code to production-line if considered useful and usable
 - svn merge etc. (R&D → active)