Recommendations for Improvement

Evaluation of CASA PMD Requirements RFP CV-740

Submitted to:
Associated Universities, Inc.(AUI) / National Radio

Astronomy Observatory (NRAO)

Submitted by:
Eduardo Miranda
154 N. Bellefield Ave., Suite 45
Pittsburgh, PA 15213
Tel. 412-268-8450

Acknowledgment

Once again | would like to thank everyone for their time and warm welcome. | hope you enjoyed this work as much
as | did.

(€] Lo Ty o SRR 5

3R 101 oo (¥ ot i o 1 N TSP P SO PR TOP PR 6
A 1o 1 01 (<) OO PPN 8
3 RECOMMENAATIONS .eeiiiiiiiieeite ettt ettt et s e s bt e s bt e e sabeesabeesabeeesabeesabeesbaeennbeesaseesbeeenees 10
3.1 Implement alternate periods of development and housekeeping........ccccecveeeevcieeeeccieeeccieee e, 12

3.2 Strengthening the authority of the Project Scientists, Project Manager and Software Architect .13

3.2.1 o o =Tt A Yo 1= | 1] PSPPSR 13
3.2.2 oY =Tt 1Y =T =T SR 14
3.23 N o] a0 [== ol a1 =] o PSR 14
33 Introduce @ QUAality ASSUIANCE MOIE....ccuuviiieiiieeciiee et et e e re e e e sbee e e e abae e e e nteeeeeanees 15
3.4 ESTADIiSh PrOCESSES .eiiiueiiieeciieee ettt e e e e e e et e e e e e bt e e e e b te e e eareeeeentaeeeaaneeas 15
3.5 Workload MmanagemeENnt POLICYuuiieiii i e e e e e st e e e s e e nrre e e aeeean 16
3.6 As so00n as Possible (ASAP) SChEAUINEc.ueiiieiee et e e 17
3.7 EQrly @Stimation PrOCESS ...ciiiiiiiiiiiiie ittt et e e e s e e et e e e st e e e e e bbee e esabeeeeenreeeeenreas 18
3.8 Master schedule and Resource calendar databases........ccceceereereeneenienienieseese e 19
3.8.1 D)] o [T PP OO PRR PR 19
3.8.2 USING the databases...cccc e e e e rre e e e e e e et be e e e e e e e e anbraaeeeeeeennnnns 19
3.9 Improving the quality Of WOIrK re@qUESES....cccciiiiieeeee e e e e e 20
3.9.1 2T =T o Yo o £ TP PP UPPPPPRUt 20
3.9.2 CANEE FROUESES. .. tiiee et ettt ettt ectte e e et e e e e ete e e e s ateeeesbteeeesnbaaeeeantaeeesantaeessstaeeesnsseessansennns 20
3.9.3 YT T ol T =T ULy U PSPRNE 21
394 ENGINEEriNG ChaNgE FEOUESES . ciiiitiiie it ccitee sttt ee et e e st e e st e e e sbteeessbeeeesanteeessantaeesnnne 22
3.10 Planning and tracking different type of WOrKccooovvieiiiii i 22
O R 0 1 Tor= I o 10 1= TSP USRRRE 22
BL10.2 JODS et e b e bbbt b e e e be e she e s ae e satesane e abe e fesanesarenaee 23
0t 0 TR T o =T 3PP UPPPUPUPUPRN 23
O S YT =Y of o o o] =Y ot PSRN 24
3.11 Traceability of functions, files anNd tESt CASES ...uiiiiiviiiiiiiiie e e e 24
3.12 Additions to the proposed testing framework ... 25
0t 0t R I =T A Y/ oY= PP PPPUPUPPP 26
3.12.11 CaNONICAl TEST CASES ...eiiuiieiiiieiiee ettt st s e s b e sre e s ree s 26
3.12.1.2 RETEIENCE TESES ..ottt et et s e st e e s be e sbe e e beeesneeesareesneeenns 26
3.12.1.3 F AN oY o] [o> Fd o] T £y £ PP 27

3.12.1.4 =Y (oY 81 4 = LA oI =) ST 27

0t 100 A I =T o 11 o o o 1= POE 27
3.12.2.1 L) A =T] o = 27
3.12.2.2 B 1T S =E] 11 7= SRR UPUPRRNt 28
3.12.2.3 REEIESSION TRSTING ..eveiiiiiiiiiiiiiiiiiitrertreeerere et e e et e e e e e e et et e e eeeeeeaeaaaaaeaeaaaaaeaaseasaeaaaaenenns 28
I A B V[T T R = T [<To [= Lo U 28
K 101 R R o] (o ot | o [T PP O SPUOPRTR PSPPI 28
3.14 Repaying CASA’s teChNiCal debt......ccii i e e e e e e 29
I T oo [Y= ={ U o 1= 11 = USRI 30
I S 7 N N o =Y ' = o ISR 30
0 A | - 11 011 = PP PPPPPPPPPPPRN 31
O [Yo L=l g T=T g L a o o TR o = A=Y -4 USSR 31
ApPPENdiX A. IMPIOVEMENT ATBAS...uuiieeiiiiiiiiieiieeeeeeiitrteeeeeeeeeitrreeeeeeesastareeeeaessaasstasseeaassasasssrsseeessesasrsssees 33
Appendix B. RACI ANalysis IMETROM.cccuiiiiiieee ettt e e e e e sabee e e e sntee e e s aneeas 41
Appendix C. CASA NOtioNal WOTKFIOWoiiiiiieiccee ettt eebee e e aree e s naeas 56
Appendix D. Definition Of DONEcccuiiii ettt e e e e ate e e e st te e e e eabae e e e sabeeeeenseeeeenseneeennsenas 76
Appendix E. Buffered MOSCOW RUIESuuiiiiiiii ettt e e e e et rre e e e e e e e bt ae e e e e e e e ennnraeneeas 77
Appendix F. Technology Readingss LEVEIS.......cuueiiiiiiiiiei ettt e ettt e e esctrre e e e e e e e enrae e e e e e e e nraaees 87

Glossary

APl — Application Programming Interface

ASAP — As soon as possible

CASA — Common Astronomy Software Application
CDG — CASA Development Group

CGL — Casa Group Leader

CUC — CASA User Committee

DoD - Definition of Done

ESO — European Southern Observatory

NJAO - National Astronomical Observatory of Japan
NRAO — National Radio Astronomy Observatory
PMD - Project Management Department

QA — Quality Assurance

RACI — Responsible, Accountable, Consulted and Informed

1 Introduction

As part of their mandate to provide program, project management and systems engineering support to
NRAO and to develop all user facing software, e.g.: CASA, AIPS++ and PST; the Assistant Director for
Program Management — Lory Wingate and the Assistant Director for Data Management & Software —
Brian Glendenning jointly launched the EVALUATION OF CASA PMD REQUIREMENTS project which
consists of the:

a. Assessment of current software development and software project management processes
against best practices frameworks such as those published by the Project Management
Institute (PMI), the International Council on Systems Engineering (INCOSE) or the Software
Engineering Institute’s Capability Maturity Model (CMMI)

b. Recommendations for improvement
Provision of a basic implementation plan, including recommended qualifications for
personnel to implement the recommendations

The assessment of the current practices was, conducted between July 15th and July 24th, 2015 at the
Charlottesville and Socorro offices of NRAO. In total 21 persons were interviewed. The assessment was
carried out in a constructive atmosphere. The assessment report, deliverable “a” above was submitted
for consideration on August 9", 2015 and accepted without observations on August 13, 2015.

This report presents the recommendation for improvement and basic implementation plan, deliverables
“b” and “c” above.

For the sake of readability the masculine form is used throughout this report. All references to the male
gender shall be deem to equally apply to women.

Although this is not an academic document, we did not wanted NRAO to take our recommendations at
face value, so we have tried to justify each of them by providing one or more references to the relevant
literature by means of footnotes.

The process followed in elaborating these recommendations is illustrated by Figure 1. It comprises two
steps:

1. Capturing the voice of the customer. This was accomplished by conducting a process assessment
of the current situation, reviewing user surveys and reports and by holding a number of
envisioning meeting where managers and the development group expressed their view for the
future.

2. The elaboration phase, in which the findings were analyzed and recommendations to address
them made taking in considerations the needs and wants of stakeholders consulted.

The rest of the document is organized as follows: Section 2, the CASA Context, which describes the
nature of the work the Casa Development Group (CDG) is doing; Section 3, Recommendations, which is
the core of this work; Section 4, Implementation Strategy, which outlines a plan for deploying them and
the six appendices containing information to help readers understand how the recommendations could
be instantiated but are not a recommendation in themselves.

Evaluation of current software
development and software project
management processes

Evalustion of CASA PMD Requremants RFP OV.740

Subretzed to

Asociated Universties, aa
Astroncrmy Ofservatory (NRAD)

Subrmitted by
Eduarda Miranda
154 M. Beefiald Ave, Sute 45

Pirtsburgn, PA 15213

fal 412308 8430

2015 CASA User
Survey

~: i

R O

4) Notional process design
1) Assessment,
- 21 persons interviewed
across all NRAO ranks
- User surveys reviewed

T ==
5) How do the processes support
the voice of the customer (VOC)?
6) Do processes support/contradict
each other?
i

ot maiens

LAt b e g e

FL B ——
4 T

G b Soneude e B ey 13 Tamiies

G ot sy o e

i T
G P s Temg

]
]
-]

2) Potential responsibility a .

Teamwork and Delegation

2

a

FS

on the team witn that exp

D = those with

bee

area of expertise, even if It means saying no (0 users

@ spirit of
developers should work in sm.
person team 1o do a code revi
Technological Retresh - upda
modem tools olherwise one’
Informed consensus
IL

Vision of future —

* Continuous improvement
— Full teamn effort
- Rapld faedback
= Sandurdy
= Tesning

ig t discussed with NRAO &
CASA management and documented using RACI method
1. Core Compentency - all developers should hive some experience with all of the 1oolkil and some
should with portions of the toolkil... all parts should have some goto perscn;
k e should be o make for inelr
. needs o be lostered instead of a transactional (JIRA) system,
CASA
* s key points
: ! Ca
* Continually reducing technical debe
3) Envisioning
workshop with the

LT pl)

Recommendations
development group

==t

Voice of the customer

Elaboration

Figure 1 From findings to recommendations

2 Context

The assessment report identified seven areas for improvement, see Appendix A for a detailed
description:

Process maturity
Process inefficiencies
People issues

Project scientists

Lack of strategic vision
Product vs. research
Tooling

No vk wNR

CASA has completed its main development period and is now well into its maintenance phase. Work
during this phase consist mostly! of bug fixes and local enhancements requested by the radio
astronomers, the CASA users, and developers alike. Most of the bug fixes and enhancements requests
are: (1) circumscribed to a single subsystem; (2) can be handled by one or two people working from a
few hours to no more than a month; (3) arrive randomly and cannot be individually accounted for in the
annual budget-planning process; (4) functionally independent in the sense that no request depends on
the implementation of others to be of value; and (5) although there might be some sequences of work
better than others by some technical criteria, the order in which work requests are executed is not
conditioned by integration needs. We will refer to these type of requests as “jobs”.

Since jobs are characterized by their short duration, low coordination needs and recurring nature, it is
not justifiable to spend a lot of time in their individual planning and risk. Because they are executed by
experienced resources within the context of a known system, the dominant risk, is the risk of the work
taking longer than planned but even this risk, due to job’s short duration, results in a low exposure easily
handled by leaving some “white space” in the developers schedule. Because developers have limited
knowledge of subsystems others than their own, job requests need to wait until a specific developer
becomes available even if others are “jdle” at the time.

A few other work requests necessitate instead of a team effort involving both, users and software staff
with competence in different subsystems and or domains over a longer period of time. Because the
amount of work required by these requests represents a significant opportunity cost, they must be given
specific approval by senior management, resources allocated, risks identified and mitigated, and
deadlines set up before work is allowed to start. We will refer to requests with these characteristics as
“projects” and “research projects”.

Projects are, by definition, larger cross-functional efforts which require substantial coordination.
Because they employ resources with different availabilities, their value is not realized unless most of
their scope is realized, these type of requests need to plan ahead, when and for how long, a resource
will be needed so they can make themselves available. Projects will also tend to have a larger exposure

1 The CASA group doesn’t have exact numbers on this but is estimated that 50% of the requests take a week or
less, 10% between one and two weeks and around 40% are larger efforts.

to technological and schedule risks which could have an impact on, otherwise unrelated, projects and
jobs through the invisible links created by resource dependencies.

Research projects might be large or small efforts, what distinguish them other type of work is that they
not have clear goals at outset or use untested or unknown technologies. These characteristics can be
summarized with the phrase “I’ll know when | see it”. In these type of situations it is not advisable to
organize the project in terms of a linear sequence of activities, but rather as an iterative process where
the parameters of the solution are monitored and the iterations allowed to continue as long as they
show progress. To be successful, these projects require the project sponsor to be available to work with
the development team. If this level of engagement cannot be secured or if during the execution falters,
the project must be terminated.

Because of their different needs jobs ought not to be managed as projects and projects with defined
requirements ought not to be dealt with as research projects. See Table 1 below. A detailed explanation
of the treatment to give each type of work is provided in Section 3.10 Planning and tracking different
type of work.

Table 1 Guidelines for classifying different work requests

Type of
processing
Critical bug Job Project Research Project
Work J
request
Bug report | Large number of Other bugs
users affected,
commonly used
functions or that
prevent a user from
doing his work
Change request Well specified. Well specified. Does not include
Sizes: XS, S, M, L Sizes: XL acceptance test
Up to three More than three cases or is of
people people doubtful feasibility
Research request Always. Requires
sponsor
commitment to
participate
Engineering Change Scheduled for the housekeeping period as per the guidelines
Request above
The guidelines provide are not mutually exclusive nor collectively exhaustive. It is up to the decision maker how
to classify each specific work request falling in a grey area

3 Recommendations

To address the finding as well as the needs and expectations? of the four main CASA stakeholders: users,
PMD, NRAO and the CDG we propose the following sixteen recommendations:

e Implement alternate periods of development and housekeeping
e Strengthening the authority of the Project Scientists, Project Manager and Software Architect
e Introduce the Quality Assurance role

e Establish processes

e Workload management policy

e Assoon as possible scheduling

e Early estimation process

e Master schedule and resource calendar data bases

e Improving the quality of work requests

e Planning and tracking different type of work requests

e Traceability of functions, files and test cases

e Additions to the proposed testing framework

e Colocation

e Repaying CASA’s technical debt

e Coding guidelines

e CASA Roadmapping

e Training

Figure 1 relates the recommendations proposed to the assessment findings and the needs and
expectations of the CASA stakeholders. The main body of the matrix shows which recommendations
directly address a given concern. The top triangular matrix depicts dependencies or synergies among the
recommendations themselves. We do not foresee any counterproductive relation between
recommendations and concerns or among recommendations.

One might ask why sixteen recommendations, why not twenty or fifty? Of course it would have been
possible to write many more recommendations just to make this report look more erudite, but
preferred instead, using Juran’s words?, to focus on a “vital few” that would solve a few urgent problems
but more importantly will create the space necessary for the CDG to continue improving itself.

While the CDG’s organization chart, see Figure 3, remains largely untouched from the point of view of
the reporting relationships, the proposed recommendations move the decision power closer to those
doing the work and introduces the Quality Assurance role. The improvements will also require an
increase in the allocation of the Project Scientists and the full time dedication of an individual to the
Software Architect role.

2 These needs and expectations were extracted from the following documents: CASA Users Committee Report
2013 and 2014, the CASA User Survey 2015 and from the results of the “Common Vision Workshop” carried out in
Socorro on August 17 - 18, 2015

3 "Pareto. Lorenz, Cournot Bernoulli, Juran and Others", J. Juran, October 1950

10

Figure 2 VOC and Recommendations

Optimization

VOC Importance

viele)

1 Alternate periods development and housekeeping

2 Strength authority SA, PM, PS

4 Institute QA function

5 Collocating team members

6 Start repaying technical debt

15 Additions to proposed lesting framework

14 Reqguirements traceability

16 Training

1.1 Predictability in deliveries

|1.2 Reliability

1.3 Usability

1.4 Performance

1.6 User documentation {up-to-date)

1.6 Keep users informed (progress, disposition)
.‘\ .7 Simpler user failure reporting process
1.8 Future directions {CASA evolution, feedback)
[1 0 Stable & documented APIs (scriptability)
1.10 Support for other telescopes

1.11 Other functionality

1.12 Import/Export data

1.13 Pipeline

2.1 Visibility

2.2 Coordination with other projects

2.3 Strategic plans

2.4 Standardized process

2.5 Standardized reporting

3.1 Cross-functionality

3.2 Ramp-up new employees

3.3 Increased scientist avallability

3.4 Improved architecutre documentation
3.5 Improved testing

3.6 Pushboton deployment

3.7 Deployment envircnments for each OS
3.8 Defined light weight processes

3.9 Coding standards

3.10 Commaon set of tools

3.11 Removal of deprecated code

3.12 Better requirements

3.13 Realistic FTE allocations

3.14 Reduce fractional allocations

1 CASA Users

2 PMD

3.15 Increased domain knowledge

3.16 Business analyst product manager

3.17 Empowerment

8 3.18 Team spirit

= _3 19 SE technology and knowledge update
4.1 Promote utilization of CASA software
4.2 Reduce lead times for new features

o [4-3 Better support for users

§ 4.4 Continue NSF Funding

i 4.5 Employee development

5.1 Process maturity

5.2 Process efficiency

5.3 People issues

5.4 Project scientists availability

5.5 Technical debt

5.6 CASA strategic vision

5.7 Product vs. research platform

velopment Team

ssessment results

@0
®

Q0 GO®

00 OO

i 5.8 Tools

(®[3 Establish processes

@

eEEE
9[O)]

QeOE
Qe @
(0][C]

©e
®

®

®

00

®®

0JC]

(®[11 Master Schedule and Resource Availability Databases

(®|12 Verifying quality of work requests

@[Workload management policy
(®[13 Planning and Traking

(®]9 Scheduling policy
(®[10 Early estimation Process

(®)|7 CASA Roadmap

@ @
®
®

0foJIC]
Oll]
0J[0]
][]

(OHONONOJONO]

® ®e

]
O]

®e

®®

J0)

oJio]

11

TBD Csc

o CASA Group
. Leader

Quality Project Soft\{vare PIPE.LINE CASA Lead Build & Test P.rOJe.ct

Assurance | Manager || Architect Architect Lead Scientists
Primary reporting Pi i
ipeline CASA DevOps
-------------- Secondary reporting Developers || Developers

Figure 3 Proposed organizational chart

3.1 Implement alternate periods of development and housekeeping

The need to allocate time to develop the necessary processes and repay CASA’s technical debt is
self-evident. The question then is not whether time should be allocated or not, but how. The options
here are: allocating dedicated time or trying to squeeze the improvement work into the existing
workload. We believe that allocating a dedicated time to work in the recommendations proposed will
send the development team a strong signal that NRAO is committed to improve, while trying to do the
improvement work in parallel or on top of the development work, will not only send the opposite signal
but is also unlikely to work, since in a crunch situation, user pressure for immediate results will trump
concerns over the long term sustainability of CASA and little or nothing will get done in this regard.
Furthermore, during change situations, performance tends to get worse before it gets better and if the
organization is under pressure to deliver, it will return to the known ways of doing things before the new
ones had the time to sink in and demonstrate their virtues, resulting in a wasted effort and
disengagement.

Suspending all development work for the duration of the improvement process is neither realistic, nor
efficient either. The best approach would be to have periods of development alternating with shorter
housekeeping periods in which the group devotes to repaying CASA’s technical debt, retooling, process
improvement and bug fixing. This strategy will give time to organization to absorb whatever changes are
introduced and use the feedback of putting them into practice to adjust the work for next improvement
round.

Two beneficial side effects of having alternate periods of development and housekeeping are: 1)
increased availability of the project scientist during the development periods due to the fact that their
time allocation to CASA would be distributed over a shorter period; 2) having everybody working in
process improvement and technical debt repayment, will be an excellent vehicle for cross training and
recomposing some of the lost “esprit de corps”.

12

During the development period the team will work on user requested functionality and bug fixing as is
doing now with the addition of a retrospective? or defect prevention® activity whose purpose is to
identify, process wise, what is working and what is not, and recommend changes and improvements.
During the housekeeping period the team focus will shift to defining their work processes, selecting
development tools, coding standards, code refactoring, test case development and fixing any critical bug
that might be reported.

Although the length of each period is discretionary, six months of user development followed by two or
three months of housekeeping seem as a reasonable trade-off as this scheme will allow substantial
development while giving the organization time to absorb a wave of changes before moving to the next.

Shortening the housekeeping period to less than two months will not be efficient since each time the
organization shifts from development to housekeeping, there will be a ramp-up period as the
improvement teams go through the stages of team formation® that is largely independent of the amount
of work to be done during the performing stage. The shorter the housekeeping period the higher the
ramp-up to work ratio and in consequence the less efficient the teams are.

3.2 Strengthening the authority of the Project Scientists, Project Manager and Software
Architect

Strengthening the authority of the Project Scientists, the Project Manager and the Software Architect is
key to empowering the organization, making it more responsive and freeing CGL’s time to work in the
CASA roadmap and workforce development.

The strengthening of these roles is congruent with the goal of empowering all CDG’s employees since
empowering requires the definition of clear boundaries within which developers and others can execute
their discretion.

Since CASA is an existing system the tasks and responsibilities of the project scientists, the project
manager and the software architect are different from what they would be in a green field development
project.

3.2.1 Project Scientists

The project scientists are the main interface between the CASA users and the CDG. Their main
responsibility includes: judging the worthiness of change and research proposals, to work with users to
clarify requests and with developers to explain the goals. The project scientist must ensure that the
criteria for accepting features are specified and the tests that verify those criteria are later run to
determine whether the features have been completed satisfactorily. In addition to assuring the software
is verified by running the acceptance test cases, the project scientists validate the software by
conducting exploratory testing.

4 N. Kerth, Project Retrospectives: A Handbook for Team Reviews, 2001. E. Derby & D. Larsen, Agile Retrospectives
Making Good Teams Great, 2006

5D. Card, Learning from Our Mistakes with Defect Causal Analysis, 2008. R. Mays et al, Experiences with Defect
Prevention, 1990

6 B. Tuckman & M. Jensen, Stages of small-group development revisited, 1977

13

A key requirement of this position is availability. This was by far the most frequent complaint heard
during the assessment period. When a fast-moving team needs an answer to a question, waiting three
days for an answer is completely disruptive to the rhythm it has established. By being available to the
CDG, the project scientist and NRAO will signal them their commitment to the project. To remediate, at
least in part, the problem of the fractional allocation to CASA we propose to concentrate all the project
scientist work during the development period, see Implement alternate periods of development and
housekeeping above, instead of spreading their effort all over the year.

The dual relationship with the CASA Science Committee serves to provide science directives to the
project scientists and to resolve conflicts or appeals of rejected work orders’.

3.2.2 Project Manager

The main responsibilities of the Project Manager are: making the initial assighment of work orders,
enforce the Workload management policy, to consolidate all the scheduling, resource calendar and
progress information and to serve as center of excellence in project management and system
engineering assisting other members of the CDG with estimation, risk management, planning, process
definition as needed.

He could also be responsible for the Quality Assurance role introduced in Section 3.3 provided a double
reporting relationship, for example to the PMD, is defined as QA should not be exclusively subordinated
to the manager of the organization is supposed to observe. In the context of this recommendation the
project manager would be accountable for the documentation and deployment of all managerial
processes.

This position requires communications, organizational and technical skills as well as the ability to cope
and persevere with the frustrations that a period of change will certainly bring. The technical skills
should include not only generic project management knowledge but also an understanding of how
software is develop and familiarity, or at least a genuine curiosity, for the radio-astronomy domain.

3.2.3 Software architect

The main responsibilities of a software architect include: defining the technology solution, documenting
it, defining the rules to be followed in the construction of the software, conducting trades-off studies
and enforcing its implementation. In the case of CASA, the software architecture already exists, so the
job of the architect would be to make the architecture explicit by representing it in the team’s chosen
notation, identifying the parts that need to be refactored, promulgating coding standards and design
rules to be followed, maintaining control over subsystems interfaces and APIs and auditing of the code
to verify compliance. The software architect will also have authority to negotiate interface agreements
with external entities such as ESO, NAOJ and CASACore.

The CASA Software architect ought to be the head of the Repaying CASA’s technical debt and the
Traceability of functions, files and test cases initiatives. In addition he should lead the effort to select
re-engineering as well as other development tools and be accountable for documenting all technical
processes.

7 As the decision to accept or reject a work order will be delegated to the project scientists there must be an
escalation procedure to resolve differences of opinion with the proposer of the work

14

This position requires excellent communication skills, the capability to give constructive criticism,
expertise in CASA’s underlying technologies, radio astronomy domain knowledge, a visionary view of the
system and a broad understanding of how it is built.

3.3 Introduce a Quality Assurance role

The responsibility of the quality assurance (QA) function is not to test the software. Its role is to educate
and ensure conformance to the development practices the organization choose for itself. The
recommendation to institute such a function into the CDG is justified by its tradition of neglecting basic
engineering practices for not good reasons: If a process does not work, then it should be changed but
not left to starve to death.

Issues identified by QA must first be addressed within the group but, if for whatever reason, this is not
possible they should be escalated for resolution. It is very important that everybody is aware of this
escalation procedure in order to prevent ill-feelings between the QA role and the CDG staff when
problems arise. The QA function has a dual reporting relationship to the CGL and another NRAO senior
management to assure its independence.

The main responsibilities of the QA function would be to check that:

e Processes, activities and tasks that comprise the life cycle are undertaken as prescribed in
procedures and work instructions;

e Required management information is reported;

e Intermediate deliverables accord with declared standards and structures

e Corrective action are brought to closure and that controls exist and are effective

e QOutput products conform to the standards defined for them.

e Escalate non compliances to senior management

e Facilitate team retrospectives

Secondary responsibilities of this role could include:

e Communicate quality assurance activities and results

e Collect measurements and prepare indicators

e Conduct customer satisfaction survey on behalf of the CUC
e Maintain a team balance score card

e Maintain the process library

e Be the curator of the CASA software web site

The QA role could be performed by a dedicated resource, by rotating the role among developers or by
assigning it to the Project Manager.

3.4 Establish processes

The CDG must document and maintain workflows for the following processes: work request
management; work planning and tracking; configuration management; software development;
verification and validation; building, deployment and releasing of software, retrospectives, quality
assurance; and measurement and analysis.

15

The workflows must describe the steps to follow, who does what, the inputs required and the outputs
produced by each step as well as the exit conditions. When necessary, workflows should make reference
to the common templates prepared by the Project Management Department (PMD).

The exit conditions for the workflow must include an objective definition of done (DoD), see Appendix D
for an example, which includes:

e The item or list of work items to be completed

e A number of verifiable conditions, e.g. All test passed, peer review completed

e A quantity when appropriate, e.g. 600 units

o A definition of the quality those things need to be completed at to say they are done, e.g.: bug
counts not exceeding X, quality attributes measured at a certain level, test coverage level no less
thanY

It would be advisable to formalize the responsibility and authority of each CDG role by means of a RACI
(Responsible, Accountable, Consulted and Informed) matrix. Refer to Appendix B for an example of RACI
analysis.

The notional process workflow used to provide context to these recommendations is provided in
Appendix C for reference purposes. It could be used by the CDG as a starting point, but it is the
organization that needs to construct their own processes to capture the collective knowledge and
generate buy-in.

3.5 Workload management policy

The purpose of this recommendation is to make the work more predictable for all stakeholders while
reducing the average waiting time of those soliciting the fixing of a critical bug or new functionality.

This initiative requires the following changes to the current scheduling and release policies:

1. Replace the semiannual® releases with a continuous release policy. That is, any work is released
to the user community as soon as it is validated. Work does not pile-up waiting for a later
release.

2. Work is classified according to its nature, e.g. fixing something vs. developing a new capability,
the quality of the specification, size, scope, e.g. localized vs. cross-cutting and dependency on
other work into one of four categories: “critical bug”, “job”, “project” or “research project” upon
submission and handled accordingly. See As soon as possible (ASAP) scheduling.

3. Projects are time-boxed. The total scope would be broken down into “must have”, “should
have”, “could have” and “won’t have” requirements. If the project runs out of time,
development would stop and any unfinished requirement could be implemented in a
subsequent project after resubmission. With appropriate planning and estimation techniques,
most projects should be able to deliver all requirements in the “must have” and “should have”

categories

8 Semiannual releases not only create artificially long average waiting periods but they also induce a “student
syndrome” among project scientists and developers were everybody rushes to work just before the assignment is
due. Time Management: Procrastination Tendency in Individual and Collaborative Tasks, R. Gafni, 2010

16

4. Research projects will also be time boxed. The basic building block of these projects is the
iteration. Each iteration begins with a definition of what needs to be learned, is then followed by
the execution of one or more experiments whose purpose is to generate the most information
about the unknowns in the research, and ends with a reflection on how best incorporate the
information gained into the project. The iterations continue until a positive or negative answer
is found or for as long any chosen indicators show progress within the time allotted. Once the
time runs out, the project can be started following a resubmission.

5. Critical bug fixing preempts all other work. Non-critical bugs are handled like jobs. Jobs and
projects are scheduled to be executed as soon as resources become available.

6. Resources are assigned full time to a task. While somebody might decide to work on something
extra, for example while waiting for a response, there should be no overlap in the scheduling
and it must be clear that with the exception of fixing a critical bug, the scheduled assignment
has always priority.

7. One day per week will be reserved to account for meetings, helping a colleague, buffer time and
any other unplanned task.

8. Expediting is restricted to the CASA User Committee

9. Stakeholders have visibility into the master schedule

10. This policy is communicated and respected

Predictability will increase because the work intake would be limited to that the availability of the
resources permits and re-prioritization is put on the hands of the CASA User Committee just for use in
exceptional circumstances. The average waiting time will be reduced as consequence of the following
policies: 1) continuous release, elimination of multitasking and faster front-end processing of work
requests.

3.6 Assoon as possible (ASAP) scheduling

Different prioritization disciplines affect different service parameters. For example, choosing a first come
first served policy will favor predictability, choosing instead a shortest job first rule will result in
maximum throughput but less predictability as scheduled long jobs gets push back by newer shorter
jobs, weighted shortest job first (aka as CD3) will maximize business values at the expense of
predictability. In any case the policy must be made clear to all stakeholder for them to understand how
their requests are being handled.

All work is scheduled to be executed as soon all resources necessary to execute them are available in a
“First Come First Served” basis unless indicated otherwise in the CASA Roadmap, in which case they are
scheduled for the slot assigned. The scheduled start should be immediately communicated to the
requester so that he would have an idea of when to expect the results or needs to make himself
available to work on the project. There are no fractional allocations.

Due to their heavier resource needs and longer durations, projects will tend to be scheduled after all
previous accepted work. This will act as a disincentive to either bundle a lot of unrelated requests into a
project or to pass the responsibility for specifying acceptance test cases to the development group as
this will automatically move what could be otherwise a job as a research project.

17

Critical bugs are faults that affect a large number of users, commonly used functions or that prevent a
user from doing his work. Critical bugs will preempt any other work. Bugs not meeting the previous
criteria will be treated as another “job”.

We believe this recommendation will result in more transparent relations with the stakeholders and in a
reduction of the management workload.

The implementation of this policy will requires being able to estimate the number of days to allocate to
a work request and to keep track of the availability of each resource. See the following
recommendations: Early estimation process and Master schedule and Resource calendar databases

3.7 Early estimation process

Estimating the amount of work required by a work request is essential to managing the work intake,
planning projects and making commitments.

This initiative comprises two parts: 1) an early estimation process, and 2) a mechanism to improve
estimations over time.

Work requests will be estimated using an analogy method combined with a “T-Shirt” sizing technique. In
order to promote autonomy® and generate commitment towards them, the estimations will be
performed by those doing the work instead of by their managers as is done today. The estimates will be
given in ideal days per individual®°.

Work requests will be classified into one of the five following categories according to the criteria of
person to who the work was assigned. If following the original assignment the task is reassigned to
somebody else it should be re-estimated by the new assignee.

e Extra small (XS) — Up to one ideal day of work. Work requests affecting more than one CASA tool
cannot be assigned this size. Example®! of XS assignments: Corrections to existing code, no
changes to documentation and no new test cases other than those required to verify the
correction.

e Small (S) — Up to three ideal days of work

e Medium (M) — Up to five ideal days of work

e large (L) — Up to ten ideal days of work

e X-Large (XL) — More than two weeks, requires detailed estimation.

To improve their estimation accuracy, estimators will be provided timely and continuous feedback on
their previous estimations'?. To do this it would be necessary to track estimated vs. actual values for
effort and start dates.

9 “Autonomy” is one of the three values identified as motivator for knowledge workers together with “Mastery”
and “Purpose”. Drive, the Surprising Truth about What Motivates Us, D. Pink, 2009

10 |deal days is a measure of how long would it take to do the job if that was all you worked on and had no
interruptions

11 Guidelines for the other categories need to be provided by the CDG to reflect the nature of their work

12 software Project Effort Estimation, A. Trendowicz and R. Jeffery, 2014

18

The feedback to be provided to the estimator would include:

e Variance for each estimate = Estimated value — Actual value

e Variances as a function of time, are we getting better?

o Normality of the variances = How does the distributions of variances look like?

e Bias = Percentage of times we underestimated, Percentage of times we overestimated

3.8 Master schedule and Resource calendar databases

As its title indicates, this initiative is about centralizing all the information necessary to make quick
assignments and schedule decisions. The Master schedule information should be available to authorized
users inside and outside NRAO while access to the resource calendar should be kept restricted to the
CDG. It is possible that Jira could be used to handle this with the adequate plugins.

3.8.1 Databases

The work schedule information is just a Gantt chart of all work scheduled for the organization colored
according to its state. See Figure 4. From this view, authorized users should be able to navigate to the
resource calendar database to see who is or will be working in a particular assignment. External users
will be provided with a limited information as the name of the project, perhaps a brief description and a
point of contact.

Week 23 Week 24 Week 25
M T w [TR F M T w TR F M T W TR F

O Time now
Completed Started M Not started, past scheduled date Scheduled
Figure 4 Master schedule database

The resource calendar data base is used to keep track of the workload of each resource and it is kept
synchronized with the master schedule. See Figure 5.

Week 23 Week 24 Week 25
xs [xs | M [™ M [M [™ [Available Available | Available [s | s

Figure 5 Resource calendar database

3.8.2 Using the databases

Once the estimations are done, the estimator and any other person working on it will agree on the first
available spot to do it by looking at the resource calendar database.

The person responsible for the assignment will enter it into the master schedule database and ask
everybody else working in the same assignment to update their calendars accordingly.

19

In the database one day per week will be blocked to account for the use of ideal days in the estimations.
By design the database should not allow the scheduling of two tasks on the same day. This will
accomplish two things: 1) prevent multitasking and 2) create an implicit buffer for tasks that do not
require an entire number of days to be completed supplementing the blocked day.

The resource database should send reminders to resources on jobs and projects about to start and close
to their due date.

3.9 Improving the quality of work requests

The interviews conducted during the assessment process indicated that a great deal of time was wasted
working in the wrong things. The purpose of this initiative is to reduce that by: 1) specifying the different
type of work requests the organization will receive, 2) verifying the quality of the of work requests
against a defined criteria upon the request’s arrival and, as much as possible, by automated means, and
3) securing the commitment of the assignment sponsor to collaboratively work with the development
team in case the requirements are not well specified.

The following sections define the four types of work request proposed: “Bug Reports”, “Change
Requests”, “Research Proposals” and “Engineering Change Requests” and the checks to apply to each of
them. Specific forms and workflows are not specified, but they should be easily implementable in Jira.
Table 1 Guidelines for classifying different work requests summarizes how each work order should be
processed.

3.9.1 Bugreports

A bug report is a request to correct a fault in the software. Bug reports do not add nor change existing
functionality.

Bug reports should identify the functionality affected, provide a description of the problem or expected
results, context in which the failure occurred, e.g. other parameters or previous actions and platform
configuration in which the software was running.

Bug reports that cannot be reproduced based on the information provided will be rejected.

3.9.2 Change requests

Change requests are requests for new functionality or changes to existing ones. Change requests
describe what the requester wants, why and how will it be evaluated. If a change request does not
include its acceptances test cases it will automatically be considered a “research proposal”.

Change requests will be verified for:

20

Value. The project scientist will be responsible for assessing the value of the request. The basic
parameters to consider are the science relevance of the request, the potential number of
customers and the frequency of use.

Feasibility. It must be possible to implement each requirement within the known capabilities
and limitations of the system and its operating environment. To avoid specifying unattainable
requirements, a developer must work together with the project scientist throughout the
analysis process. Requests of doubtful feasibility will be re-classified as “research proposals”
Unambiguity. Unambiguity means that the requirement is interpreted the same way by different
readers. Ambiguous requirements result in wasted time when developers implement the right
solution to the wrong problem. One way to ferret out ambiguity, is to have the user prepare the
acceptance test cases for their request.

Verifiability. A verifiable requirement will include, at least one positive and one negative,
acceptance test, by which the new or changed functionality will be judged acceptable or not.

Acceptance tests are specifications for the desired behavior and functionality of a system. They should

include:

The system state, the condition of the system at the start of a test. Sometimes this condition can
be specified by means of a name, e.g. “clean image”*? but another times will be defined by a
particular instantiation of all system attributes, or state variables, at a particular point in time,
e.g. parameters values, data set to use, previous actions, platform configuration in which the
software must be in order to use the required functionality

The inputs to be used specified in terms of parameters and their values

The condition or action that invokes the requirement, e.g., upon calling this task, or when hitting
the display button

The expected result described in terms of observable and measurable parameter values or
graphics, e.g., ne

A positive test case would include conditions that are part of a normal operation, the “happy path”. The
negative acceptance test will give an example of what to do when something happens in the system
under test that is not considered part of normal operations or the intended inputs.

3.9.3 Research requests

Research requests are submittals for new software capabilities in which either, the requester cannot
define in objective terms what is the expected result or the developers are unsure about whether or not
the requirement can be implemented within the known capabilities and limitations of the system and its
operating environment.

Research requests should include:

Intent: This is the “elevator pitch” - one to two sentences describing the essence of the solicited
capability.

A user story: A description of a capability in action. The story should include a short description
of the situation, the challenges present and how the solution helped. Paper prototypes, wire

13 This is a made up state used for illustrative purposes, NRAO should provide relevant examples.

21

diagrams and other graphic illustrations are essential to get a story better understood. The story
could be “real” or envisioned.

e Technology Readiness Level (TRL): An assessment of the stage of development of the proposed
technology. A common TRL scale ranges from 1 to 9, see Appendix F, where 1 corresponds to a
technology for which basic principles have been observed and 9 to a technology that is in actual
use. The TRL of the proposed research would be useful for determining the type of resources
that need to be allocated, what activities must be carried out and how long it could take before
the concepts researched are ready for use.

e Benefits/Results: The value to the astronomer or the CASA community in undertaking the
exploration.

e Availability: In this type of work it is necessary for the proposer to work close with the
development team, for that reason it is necessary that the proposer makes himself available. If
this is not possible to project should not be started.

3.9.4 Engineering change requests

An Engineering change Request is a request to modify the design of a working system with the purpose
of improving some part of it. Engineering change requests do not add new or change existing
functionality and will mostly be raised by CASA engineers or external developers.

They will be schedule for the housekeeping period.

3.10 Planning and tracking different type of work

The purpose of this recommendation is to define the different treatments each type of work request
should have from four perspectives: 1) life cycle, 2) planning and tracking, 3) risk management and 4)
measurements to be collected

The recommendation does not include specific templates and workflows which should be designed and
implemented by the CDG. Please refer to Table 1 Guidelines for classifying different work requests.

3.10.1 Critical bugs

Critical bugs have, in general, low coordination needs and must be fixed as quickly as it can. The fixing of
bugs follows a sequential process which includes the following steps: replicate the problem, understand
the problem, localize the code to be repaired, repair the code and depending on the problem one or
more of: restore the data, prepare work around and submit an Engineering Change Request. The main
risk associated with a critical bug is inadvertently creating other bugs, which should be minimized with
the proposed improved testing, see Additions to the proposed testing framework. If the bug requires a
major redesign, it will be dealt with a workaround, the simplest code patch possible and the raising of an
Engineering Change Request.

Reporting on critical bugs is done at the state and not task level, e.g. waiting, scheduled, in
development, in testing, accepted, etc.

Metrics of interest include cycle time, time in state, planned vs. actual effort and on-time completion.

22

3.10.2 Jobs

By its own definition jobs have low coordination needs and their risk exposure is low. If it wasn’t so they
should not have been classified as “jobs”. In jobs, planning is either implicit or a simple “To Do” list and
coordination achieved through direct supervision or mutual adjustment. Risk would be dealt through
the buffering mechanism inherent in the T-Shirt sizing technique and by blocking one day of the week
for unplanned tasks. This roughly amounts to a 20% safety margin for medium (5 days) and large (10
days) jobs.

Reporting on critical bugs is done at the state and not task level, e.g. waiting, scheduled, in
development, in testing, accepted, etc.

Metrics of interest include cycle time, time in state, planned vs. actual effort and on-time completion.

3.10.3 Projects

Larger cross functional work requests require substantially more coordination than jobs do. Because
they employ resources with different availabilities, these type of requests need to plan ahead, when and
for how long, a resourced will be needed so they can make themselves available. Projects will also tend
to have a larger exposure to technological and schedule risks which could have an impact on, otherwise
unrelated, projects and jobs through resource dependencies.

The larger efforts that characterize a project implies that the resources working on it will not be
available for other tasks, the opportunity cost mentioned above, for long periods of time and so the
decision to proceed must be made at higher levels than in the case of jobs.

To prevent the delay on one project to propagate to other projects we propose to time-box them. Time
boxing is a management technique which prioritizes schedule over deliverables. This means that if
during the execution of the task it is anticipated that all requested deliverables will not be ready by a set
completion date, the scope of the work will be reduced so that a smaller, yet still useful, output is
produced by such date. There are several techniques to do this, describe one proposed by the author!4.
Using such a technique will, in all cases, require breaking down the assignment into lower level features
and prioritizing them according to user preferences and technical dependencies.

When a higher degree of coordination is necessary, such as in the case of work provided by external
entities or using multidisciplinary internal teams, we recommend using milestone planning®®
supplemented with a rolling wave activity planning.

Well known agile approaches such as Scrum or Lean Development will not be readily applicable to CASA
development because they rely on generalists while the current CDG is built around specialties.

Reporting on the projects shall be done at the milestone level. Metrics of interest would include some
form of earned value, number of defects, open risks and technical performance.

1 Time boxing planning: Buffered Moscow rules, E. Miranda, 2011
15 Warning: activity planning is hazardous your project's health!, E. Andersen, 1996

23

3.10.4 Research Projects

As mentioned before a research project is a project in which the form of the solution is not known in
advance. The research request’s TRL would be used for three different purposes: 1) assess the science
merit, 2) estimate the duration of the project and 3) plan what needs to be done to move from the
initial to the target TRL.

Because these are research projects, they have two goals: 1) finding what was sought and 2) learning.
Risk wise we want to avoid these projects from delaying others and from wasting valuable results if
neither of the two goals are being reached. The risk of a research project affecting other project would
be mitigated by time boxing them. The risk of wasting resources will be mitigated by interspersing
“tollgates” in between iterations.

Tollgates are pre-established decision points in the life of the project. At each tollgate, a decision will be
made on whether to continue with the project, abandon it, defer it, or to submit a follow-up work
request.

At each tollgate, the project will be reviewed from three different perspectives: science, progress, and
cost. During the review the following questions should be answered: Will the rationale for doing this
project still valid when is completed? Is the project making progress? Are resources being used
efficiently? Is the sponsor participating as per his commitment? Will the project be completed within its
time box?

Reporting on these projects includes performance monitoring®® of key parameters identified as part of
the project work.

3.11 Traceability of functions, files and test cases

The purpose of requirements traceability during development is to verify that all requirements have
been implemented and verified. Establishing this kind of traceability at this point in the CASA life cycle is
neither feasible nor necessary. This does not mean traceability is not a valuable concept, it just mean it
needs to trace what is important. Today there are no links between user functionality, software files and
tests with the consequence that somebody without many years of experience in the application will
have difficulties trying to figure which files need to be investigated and which test cases to run in
response to a work request. Furthermore when a module changes what test cases should also change?

16 Adding Value in Product Development by Creating Information and Reducing Risk, T. Browning, J. Deyst, S.
Eppinger, and D. Whitney, 2002

24

To solve this problem we propose to implement traceability at the function and not at the requirement
level as illustrated in Figure 6.

Afunction might contain

other functions
Function

Afunction is implemented Afunction is tested by one
by atleast one file or more tests

o3 [

Figure 6 Proposed Traceability Schema

The information provided by this mechanism will serve many purposes: support impact analysis of new
changes, reduce the risk of leaving things out, the selective running of test cases and the transfer of
knowledge from specialists to the whole team.

Since providing all information at once will be very onerous we propose that after an initial seeding of
the structure by the specialists, each time someone has to modify or add a new file he checks whether a
new entry or link in the table needs to be updated or created. Accumulating traceability information as
the team perform its development work will take little effort from each developer and get better over
time.

3.12 Additions to the proposed testing framework

This initiative supplements the current discussion on the CASA Test Framework!’. The framework
proposes a hierarchy of increasingly demanding tests, starting with unit testing at the C++ level (aka
“Code”, “Tool”*8), a smoke test, modular tests and regression tests at the “Task” level, to prevent the
long running tests from starting if the tests at the lower levels do not pass.

It is not clear from the framework discussion whether lower levels in the hierarchy will take less time to
run because their tests are shorter or just because there a fewer of them. The difference is that less of
them might miss many faults. Shorter test cases on the other hand, are likely to execute the same basis
path through the software just a fewer times resolving the problem.

17 https://safe.nrao.edu/wiki/bin/view/Software/CASA/CasaTestFrameworkDiscussion

18 The two main architectural elements of CASA are “Tools” and “Tasks”. Tools provide access to both the lower
level utilities (e.g., table browsing) and the fine-grained applications for astronomical processing (e.g., measures
which enables coordinate transformations and manipulation of quantities with frame (time, position, direction)
information). Tools have a somewhat object-oriented interface in that data is loaded into each tool and then
manipulated by the associated functionality. Tasks provide a higher level interface to frequently used applications
(assembled from the underlying tool functions); this is very similar to the interface provided by other radio analysis
packages like AIPS or Miriad). CASA Architecture and Applications, J. McMullin et al, 2007

25

To address this problem we propose to use for types of test cases: “Canonical”, “Reference”,
“Application” and ”Performance” which we distinguish from the purpose of the test, e.g. “unit”,
“smoke”, “r

test suites.

regression”, etc. We also propose to use branch coverage to improve the thoroughness of

3.12.1 Test types
3.12.1.1 Canonical test cases

Canonical tests are based on synthetic data whose purpose is to detect whether after a change, given
the same input the software produces the same output. Canonical test cases are not new. Figure 7
illustrates an old TV adjustment signal used to calibrate and repair analog TV equipment. In the CASA
case, a team from ESO lead by Dr. L. Cortese proposed to use synthetic data to test the performance of
imaging algorithms?®

The expected result for these test cases will be set when the tests are created under the assumption the
software is correct. Once defined, the test cases will be used as invariants with respect to themselves. If
subsequent to a software modification, the test detects an unexpected change in the output value the
code should be investigated. A large number of short canonical tests can be used to achieve a high
coverage of the software under test and provide an easy identification of the offending code.

3.12.1.2 Reference tests

Reference tests are standardized tests used to check the quality of the processing. Reference tests could
be based on synthetic or real data, what distinguishes them is that they are under configuration control
and exhibit characteristics peculiar to what needs to be tested. Besides testing, reference test cases can
be used to specify requirements by stating how a particular feature should appear after the change.

INDIAN HEAD FCOR SETTNG
VERTICAL WEDGE TO OF BRIGHTNESS |
CHECK HORIZ. RESOLUTION CONTRAST CONTROLS

UHSGED 0 cm:cn £ !
OVER= COMF'ENSATION ! DIAGONAL LINES

LARGE CIRCLE FOR
ADJUSTING HEIGHT ¥
INDICATES NO.
OF LINES

| SHADED WEDGE To cHECK
'« AMPLITUDE DISTORTION IN
RECEIVER

HORIZ, WEDGE TQ CHECK‘_!‘
VERTICAL RESOLUTION

“ | CORNER CIRCLE
— TO CHECK FOCUS,
8ARS TO CHECK LOW OF BEAM AT EDGES
FREQUENCY RESPONSE

Figure 7 Old "canonical" TV signal

1% Formal Tests of CASA Imaging; L. Cortese, R. Galvan-Madrid, P. Klaassen, S. Longmore, D. Petry; ESO; January
2011 - May 2012

26

3.12.1.3 Application tests
Application test are based on real data and used to validate the code developed.
3.12.1.4 Performance tests

Performance tests could be based on synthetic or real data and their results are baselined. They must
run in a designated environment in order for the results to be comparable from run to run. These tests
respond to different scenarios and their purpose is to collect system performance metrics and verify
that the changes introduced do not negatively affect the system performance.

Test purpose
Table 2 identifies the different purpose of the test and the type of test case that could be used.

3.12.1.5 Unit testing

Currently testing of the CASA tools (aka: “Code” or C++ level) is ad-hoc. What is called unit testing by the
CDG is testing at the task level. We fully agree with the need to implement automated and systemic
testing at the unit level using a testing framework like googletest (open source) or Parasoft
(commercial).

Besides the obvious benefits of catching faults earlier, having automated unit tests at the tool level will
allow developers to consistently run a test suite before committing the modified code to the software
repository minimizing the risk of breaking the build. This type of capability is mandatory if NRAO is to
implement an automated deployment pipeline and to perform refactoring of the code.

It is recommended that the developers familiarize with xUnit testing patterns®° to produce resilient test
code before they start this work.

Table 2 Relation of test types and test purpose

Purpose of
the test
Unit Task Regression Validation Acceptance

Type of J
test
Canonical +++ ++ 4
Reference +++ 4+ ++ 4 4+
Application + ++ ++
Performance For profiling +++ +++ .

The number of “+” indicates the level of preference

20 G. Meszaros, xUnit Test Patterns: Refactoring Test Code, Addison-Wesley, 2007

27

3.12.1.6 Task Testing

A CASA Task is a Python script that implements a frequently used astronomy task by calling a tool
functions and passing results among them. The testing of tasks, which combines functional (Critical Test
Suite) as well as performance (Accepted Test Suite) test, is currently automated and there are some
measures of statement coverage.

The problem with this type of testing is that it uses real data sets which take a long time to process,
imposing a limit on when and how often they can be run. Ideally the developer would be able to test the
code before committing it to the repository.

Similarly it is important to separate functional from performance cases since the later not only tend to
take longer but also require a baselined environment to produce results that could be compared.

Since most of the tasks seem to have a large number of parameters we also recommend to use
combinatorial testing?! to check for interaction effects between parameters with a minimum number of
test cases.

The proposal to shorten the Task testing time is to use canonical and reference test cases as much as
possible.

We also need to identify which test cases correspond to what functionality to minimize running tests in
part of the code that was not modified.

3.12.1.7 Regression testing

The purpose of regression testing is to provide confidence that the system still functions correctly
following modification or extension of the system. This requires that once a new functionality is
introduced a sub set of the tests cases used to verify whatever was built is retained as part of the
regression test suite. Regression testing ought to be run at the tool and the task levels.

3.12.2 Measure test adequacy

We recommend to mandate branch coverage as a measure of test adequacy, without establishing a
predefined target since it would be very onerous to start developing tests cases for the sake of reaching
90% or any other set level of test coverage, but requiring instead that every time the code is checked-in
its branch coverage has increased from the previous one.

3.13 Colocation

As described in the assessment results, the CDG relies mostly in tacit knowledge to perform its work.
The main mechanism?? for the transfer of this type knowledge is socialization, which depends on the
people working on the same team interacting often with each other. This in turn, is greatly influenced by
the physical distance between people and other workplace characteristics such as open vs. closed, and
whether it promotes serendipitous encounters or not. Thomas Allen? and others have shown that a

2! practical Combinatorial Testing, R. Kuhn, R. Kacker and Yu Lei, NIST, 2012

22 A Dynamic Theory of Organizational, I. Nonaka, 1994

23 Managing the Flow of Technology, T. Allen, 1977; The Effects of R&D Team Co-location on

Communication Patterns among R&D, Marketing, and Manufacturing, C. Van den Bulte & R. Moenaert, 1998;
Rapid Software Development through Team Colocation, D. Teasley, 2002

28

separation of around 60 feet cuts by half the probability of weekly technical communications between
two persons working in the same team. This gets worse if people work in different floors or different
locations.

So this recommendation is about colocating the CDG within their two locations: Charlottesville and
Socorro and providing common spaces to promote spontaneous exchanges among team members. See
Figure 8.

At each location, the CDG team members should be seated together in one floor, along the same
corridor while providing unreserved meeting places — perhaps one or two offices without doors and
white walls for the quick sketching of ideas —, information radiators?*. This combination of closed offices
and common areas will promote collaboration while preserving privacy and concentration.

Colocation will go a long way towards breaking down the functional silos within the development group,
it will provide opportunities for cross-training and contribute towards the feeling of purpose ° of the
CDG members.

@ 2 2 P =
H O H© @ all |[Fo H© shared || O
| el ©| 8 B ! e | space | ¢ |
1 5 [% =4 1k
= | P - P P
L | 3 03 Shared 't ol | o (o ¢),f""'_:"\“ = Qo o <
ol o4 space 2| | I e| I o4 @
] T)] = & o0 =T &/ =i &

Figure 8 Colocated space design. The shared unreserved space will promote serendipitous encounters

3.14 Repaying CASA’s technical debt

The term “technical debt” refers to the increasing cost of maintaining a system resulting from practices
that are expedient on the short term but tend to cause difficulties in the long term. It is an analogy with
somebody living on credit and eventually being unable to repay and be forced into bankruptcy or in the
case of a software system having major problems every time a change is made.

In the case of the CDG, technical debt manifest as a lack of system level documentation, design rules,
insufficient test cases, uncontrolled interfaces, a variety of programming styles, lack of automation and
supporting tooling.

As part of the technical debt repayment we suggest:

1. Use atool like Coverity Architecture Analysis, Lattix or Structure101 to: 1) reconstruct the design
of the CASA code, 2) guide the refactoring effort and 3) enforce design rules and follow the
evolution of the code base.

24 An information radiator, is a publicly posted display that shows people walking by what is going on. Information
radiators convey for example information about the status of development to the team and management. Alastair
Cockburn says an information radiator “displays information in a place where passersby can see it. With
information radiators, the passersby don’t need to ask questions, the information simply hits them as they pass.”,
A. Cockburn, Agile Software Development: The Cooperative Game, 2001

29

2. Conduct an analysis of the code base and the change history to identify the highest volatility
components and those most fault prone to prioritize any refactoring effort.

Refactor the code.

Develop additional test cases

Set up a common development environment, including the use of static analysis tool

oV kw

Include automatic quality gates in the check-in procedure

3.15 Coding guidelines

A software program is written once but read many times. Naming and coding conventions are very
important if any programmer must be able to look at another's code and quickly understand it.

Currently the CDG has some coding conventions, but as mentioned during the interviews these are not
consistently applied nor enforced.

It is recommended that the group choose appropriate guidelines for each of its code bases, for example
Google Style Guide for C++ and PEP-8 for Python, and enforce its application either by automatic means,
e.g. style checker or through code reviews.

As with other initiatives this also must be applied in an incremental fashion since refactoring the code to
comply with the chosen guidelines, all at once, would be prohibitively costly.

3.16 CASA roadmap

The CASA roadmap would describe the planned evolution of the CASA software to internal and external
audiences over the next four to six quarters, so they could plan their own work accordingly. The
roadmap ought to be a living document regularly updated and approved by the senior management.

The roadmap will show what things the CDG plans to work on. Typically this will be a combination of
user and CDG proposed features or enhancements to the software.

The roadmap will link the work of the CDG to preconditions, e.g. the availability of a new compiler, and
external events, e.g. an approved research project that needs a new functionality. See Figure 9.

Q1 Q2 a3 Q4 Ql Q2

User
community/
Theme

Features and
enhancements

Technology

External
events

Figure 9 CASA Roadmap

30

The User community/Theme in Figure 9 refers to any particular subset of users?®, e.g.: “Early Career”,
“University/College”, and “Optical/IR Experience” or theme, e.g. “single dish support” targeted on a
particular quarter. This will be used internally to schedule work requests of a particular type and
externally to manage expectations.

Features and enhancements: Are a concise description of what is planned for delivery on in a given
quarter. Typically this will be a combination of user and CDG proposed features or enhancements to the
software.

Technology. Any technology that needs to be available by the time the features and enhancements are
to be delivered. If the technology in question is not available it is unlikely the features planned for that
quarter could go into production.

External events. This refers to science or construction events that require a new functionality. For
example the beginning of an observation period following the approval of science proposals could be an
external event.

3.17 Training

Institutionalize a training program to familiarize software developers with the radio astronomy domain
and radio astronomer with basic software engineering principles. This initiative is key to bridging the “us
vs. them” divide. Ask developers to explain their own subsystems to the group.

This initiative could be implemented by means of brown bag seminaries or similar mechanism. It could
also be used as a recognition mechanism to knowledge mastery® by inviting experts to talk about their
areas of expertise, vision for the future and discipline.

4 Implementation strategy

As reflected by our first recommendation “Implement alternate periods of development and
housekeeping”, we favor an incremental approach to process improvement.

Since NRAO has not yet decided which recommendations will implement or how many people will
allocate to work on then and when it is impossible to provide the agency with a specific plan of action.
As an alternative this section focus on identifying dependencies between activities, see Figure 10, that
will help NRAO define the order in which to tackle them once the above decisions are made.

NRAO should start the process by creating an end-to-end blueprint to guide the implementation and
communicate the vision to external and internal stakeholders.

Second it should allocate the work to each housekeeping increment. If NRAO decides to adopt the
“CASA Roadmap” recommendation, it should document the work to be done there.

Each recommendation should be implemented within a single period to be sure it can be validated in
the subsequent development period and must an owner that is accountable for everything necessary to
achieve the goal sought, e.g. tools, procedures, migration strategy, training and measurements. A
reasonable first approximation to ownership will be to assign all work in a given area to the person

252015 CASA User Survey

31

responsible for that area of work, e.g. project management work to the Project Manager and build work
to the B&T Lead. The CGL should be responsible for those recommendations directly targeting the
welfare and culture of the group and those requiring interactions or budgetary approval from NRAO,
e.g. “Colocation” and “Implementing Alternate Development and Housekeeping Periods”. The CGL
should be also the speaker for the improvement initiative at all levels of the organization and externally.

All improvement work should comply and, whenever possible, use the documentation templates
developed by PMD and when not, leverage their expertise in system engineering processes and
techniques to assist with the development and deployment of tailored ones.

|
Establish processes | + | Introduce the Quality Assurance role ‘
1

[Traceabllity of functions, fles and test cases |

l Additions lo the proposed testing framework | l Alternate periods of development and housekeeping -\Ea Repaying CASA's technical debt

| Strengthening the authority of the PS, PM, SA H Establishing coding guidelines |7
| As soon as possible scheduling ii
Colocation | Early estimation process |7
I Master schedule and resource availability data bases I»
[t

Improving the quality of work requests '_I—b{ Planning and tracking different type of work requests ’—

Figure 10 End-to-end dependency relations between recommendations. Work on a recommendation can start at any time, but
cannot be completed until all predecessors have been completed

32

Appendix A. Improvement Areas
Introduction

As part of their mandate to provide program and project management support and systems engineering
services to NRAO and to develop all user facing software, e.g.: CASA, AIPS++ and PST, the Assistant
Director for Program Management — Lory Wingate and the Assistant Director for Data Management &
Software — Brian Glendenning jointly launched the EVALUATION OF CASA PMD REQUIREMENTS project
which consists of the:

a. Assessment of current software development and software project management processes
against best practices frameworks such as those published by the Project Management Institute
(PMI), the International Council on Systems Engineering (INCOSE) or the Software Engineering
Institute’s Capability Maturity Model (CMMI)

b. Recommendation of improvements

c. Provision of a basic implementation plan, including recommended qualifications for personnel
to implement the recommendations

This report covers the results of the process assessments, deliverable “a” above, conducted between
July 15 and July 24™, 2015 at the Charlottesville and Socorro offices of NRAO. In total 21 persons were
interviewed. The assessment was carried out in a constructive atmosphere. The recommendation for
improvements and the implementation plan, deliverables “b” and “c” above will be provided at a later
time, after consultation with NRAQO’s leadership.

The CMMI% is a collection of good software and system development practices organized in five levels
of increased maturity developed by the Software Engineering Institute under the auspices of the
Department of Defense that has been widely adopted?’ throughout the world by governments and
commercial organizations as well. It is important to remark at this point, that the maturity level of an
organization does not reflect whether it can produce or not some very exciting and successful software,
but in the organization’s ability to efficient and consistently deliver on the commitments it makes.

Projects executing at Level 2 of the CMMI maturity scale are characterized as projects following basic
accepted practices such as planning, tracking and configuration management; executed by people
trained in tasks they are going to perform; with adequate resources to deliver the expected results;
involving relevant stakeholders and audited to verify compliance with the processes they had set for
themselves.

The assessment of current practices was originally planned to cover all Level 2 process areas and the
technical implementation and risk management process areas of Level 3. Of the thirteen originally
planned process areas, the assessment only covered ten of them as responses to previous questions
rendered further inquiry inconsequential.

26 This document assumes the reader has a basic knowledge of the CMMI model; if this not the case, please refer to Appendix A for a brief
description.

27 Over 10,000 organizations assessed worldwide as of 2014. Level 2, 21%; Level 3, 66%; Level 4, 2%; Level 5, 7%

33

In the last years, the CASA Development Group, from here on referred simply as the group, has
implemented, with varying degree of success, a number of initiatives like the use of the JIRA?® tool to
track the assignment and progress of work, a new build and test environment, the migration to a
distributed version control system, regular project status (Monday’s) meetings and the introduction of
the software architect and project management roles. While not diminishing the importance and
positive impact of some of these initiatives, the assessment identified a number of weaknesses such as
the lack of defined procedures for most of the processes assessed, unclear roles and responsibilities,
minimal or no existing system level documentation, the nonexistence of quality assurance mechanisms
capable of enforcing any design rule or mandated convention and the lack of a strategic vision and a
feature roadmap for the CASA software all of which prevent the organization from performing at a
higher maturity level. Although not part of the original mandate, the assessment also revealed a
mounting “technical debt”?° which keeps increasing the effort required to fix the software and develop
new features, a tension between the CASA software as a product or as a research platform, insufficient
or uneven involvement of the science user community and some people issues. These last concerns are
not within the purview of the group to resolve and will require senior management involvement to be
overcome.

The group copes with the process issues through various mechanisms: centralized decision making, the
leadership of knowledgeable individuals with a long tenure in the organization, a long period of
assimilation through which new employees must pass and the extreme specialization of the personnel.
These mechanisms are enabled by a low turnover rate resulting from the love of the members of the
group for the work they do, the location of NRAO offices in areas with low demand for software
engineers and family relations. These mechanisms however, are not without drawbacks: bottlenecks,
feelings of disempowerment, the risk posed by the departure of any individual and long ramp-up
periods which not only makes almost impossible for one developer to help another when the situation
demands it, but has also resulted in the breakdown of the identity of the group as such and the
pigeonholing of its members. These consequences are in no way attributable to a single individual or
period of time, but the result of a cumulative process that keeps reinforcing itself.

As people’s motivation and having the necessary time to change are the ultimate determinants of the
success or failure of any improvement initiative, the need to refactor the CASA software to diminish its
technical debt, the time allocation of science users to the CASA group and the people issues will need to
be addressed together with the more specific recommendations concerning the software development
process, documentation and quality assurance for this initiative to succeed.

The rest of the document is organized as follows: The process followed for evaluating current practices,
the result of the assessment and its interpretation, next steps and appendixes.

Assessment results and interpretation

The assessment results confirmed the initial perceptions held by senior management that the group was
most likely working at Level 1 of the SEI maturity scale, but that the knowledge, tenure and work ethic

2 JIRA is an issue tracking system developed by Atlassian, https://www.atlassian.com/

2 The term “technical debt” refers to the increasing cost of maintaining a system resulting from practices that are expedient on the short term
but tend to cause difficulties in its long term. It is an analogy with somebody living on credit and eventually being unable to repay and be forced
into bankruptcy or in the case of a software system having major problems every time a change is made.

34

of the employees compensated for the lack of maturity in its processes. The same perception was
shared by the employees, who although aware about the changes required to improve their
development process felt demotivated to carry them out.

It is important to note here that when we refer to the lack of guidelines or claim that a given process is
not performed or something is unclear, we are doing this from an organizational and not an individual
perspective. Sometimes a document or proposed procedure does exist, as a matter of fact some of them
have been provided to assessor by different interviewees, but if they remain unknown to other
practitioners or if a given process is not performed by all, for the purpose of this assessment they were
considered lacking or not satisfied. Similarly when referring to other problems such as insufficient time
to perform a task or people issues, they were included in the report only if mentioned directly or
inferred through remarks made during the interviews by more than one individual.

Table 3 summarizes the result of the assessment for the process areas evaluated.
Process maturity

The group lacks documented or otherwise agreed organizational guidelines for most of the process
areas assessed. Specifically there is very little in the form of common processes other than development
starts with a JIRA ticket that is assigned to one developer and that after the coding is done it should be
tested, first internally and second by a science user. There is no planning other than the ordering of
tickets according to priority and code freeze dates. There is no capacity planning at the developer level
to determine tentative dates for delivery. Progress reporting is ad-hoc and there is no comparison of
planned versus actual values that would allow the improvement of the estimation process. There are no
quality assurance® mechanisms capable of enforcing any decisions concerning coding conventions,
design rules or any other process for the matter. There is no root cause analysis following a problem nor
a defect prevention process in place. In terms of configuration management, there is a version control
system in place but there are no explicit activities designed to keep, for example code and tests in
synchrony, no traceability from tickets to work product and vice versa nor configurations audits. This
lack of processes result in long ramp-up times for new employees and imposes a centralized decision
making and coordination style that not only lengthens the processes’ lead times but also results on a
feeling of disempowerment among the employees.

Process Efficiency

Only three out of six developers in Socorro reported lead times and process times during the interview.
The three indicated long lead times, in the order of months, for tasks that would only take weeks to
complete (process time). The three main culprits identified for this were: the time it takes to clarify
requirements and bugs reports, the time it takes to get user testing done and get feedback on the code
developed. Of the three developers that responded, only one reported completion and accuracy
indicating that around 50% of the tasks performed required rework after being declared completed.

The assessment did not find evidence of automated unit testing at the C++ level, although there seems
to be an initiative in this regard3. The so called “automated unit testing” is performed at the Python

30 Quality assurance should not be confused with testing. QA is designed to make sure organizations do as they say

they will.
31 https://safe.nrao.edu/wiki/bin/view/Software/TestCppEvalDocumentation, accessed Aug. 3, 2015.

35

level invoking the C++ code, so it is more what would be called integration or function test in other
organizations. This process produces a coverage3? report that is accessible through the Casa Wiki* but
there was no indication of how or by whom the reported information is used. The coverage number
reported, 30%, points towards insufficient testing. There are no canonical test cases that could be used
as test oracles or to specify new features.

Use of tools to automate routine tasks such as verifying coding conventions or generate test cases are
not used. See the section on tools for more details.

32 Coverage refers to number of elements, lines of code, methods, branches, paths that are exercised by a test suite. It is usually expressed as a
percentage. A 30% statement coverage means that only 30% of the total number of lines of code in a program was executed by a test suite

33 https://safe.nrao.edu/wiki/bin/view/Software/TestCoverageAnalysisDocumentation, accessed Aug. 5, 2015

36

Table 3 Summarized assessment result

Process Area

Requirements
Management

Project
Planning
Project
Monitoring
and Control

Measurement
and Analysis

Process and
Product
Quality
Assurance
Configuration
Management

Requirements
Development

Technical
Solution

Product

Integration

Verification

Validation

Description

The purpose of Requirements Management is to
manage the requirements of the project’s products
and product components and to identify
inconsistencies between those requirements and the
project’s plans and work products.

The purpose of Project Planning is to establish and
maintain plans that define project activities.

The purpose of Project Monitoring and Control is to
provide an understanding of the project’s progress
so that appropriate corrective actions can be taken
when the project’s performance deviates
significantly from the plan.

The purpose of Measurement and Analysis is to
develop and sustain a measurement capability that is
used to support management information needs.
The purpose of Process and Product Quality
Assurance is to provide staff and management with
objective insight into processes and associated work
products.

The purpose of Configuration Management is to
establish and maintain the integrity of work products
using configuration identification, configuration
control, configuration status accounting, and
configuration audits.

The purpose of Requirements Development is to
produce and analyze customer, product, and product
component requirements.

The purpose of Technical Solution is to design,
develop, and implement solutions to requirements.
Solutions, designs, and implementations encompass
products, product components, and product-related
life-cycle processes either singly or in combinations
as appropriate.

The purpose of Product Integration is to assemble
the product from the product components, ensure
that the product, as integrated, functions properly,
and deliver the product.

The purpose of Verification is to ensure that
selected work products meet their specified
requirements.

The purpose of Validation is to demonstrate that a
product or product component fulfills its intended
use when placed in its intended environment.

Assessment

Not satisfied. Process is not
documented nor efficient

Not satisfied. Process is not
documented nor efficient
Not satisfied. Process is not
documented nor efficient

Not assessed

Non-existent

Not satisfied. Mostly code
version control. No
traceability

Not satisfied. Ad-hoc

Not satisfied. Process are not

documented nor efficient

Not assessed

Not satisfied. Process is not
documented nor efficient

Not satisfied. Process is not
documented nor efficient

37

Risk The purpose of Risk Management is to identify Not satisfied. Ad-hoc
Management potential problems before they occur so that risk-

handling activities may be planned and invoked as

needed across the life of the product or project to

mitigate adverse impacts on achieving objectives.

Decision The purpose of Decision Analysis and Resolution is Not assessed

Analysis and to analyze possible decisions using a formal

Resolution evaluation process that evaluates identified

alternatives against established criteria.

Supplier The purpose of Supplier Agreement Managementis = Used to evaluate relationship

Agreement to manage the acquisition of products and services with ESO and NAOJ. Not

Management | from suppliers. satisfied. Process is not
documented

People issues

On the people side, the assessor found people reluctant to take initiatives outside their area of
immediate concern or to assume leadership roles for fear to be “burned”, not by their own doing but by
a lack, real or perceived, of empowerment to fulfill the role. This coupled with the extreme
specialization has resulted in a silo culture in which success is achieved by doing well on your own little
niche rather than looking at the whole CASA system. In turn, this reluctance has forced management to
do all coordination work and to make decisions that could be done at a lower levels which ends up
reinforcing the original perception of the employees which in turn confirms the view of the managers.

In addition to this, the complexity of the domain also contributes to feelings of subordinateness as most
astronomers can program, which is not the same as saying they are capable software engineers®, but
not all programmers can do or understand radio astronomy in the same proportion.

History and personalities were frequently mentioned as the main hurdles to improve the development
process.

Project scientists

Project scientists play key roles in the development of the CASA software. They are the responsible for
clarifying requirements and validating results.

In the current process, these two activities are in the critical path of most bug fixes and new feature
development and in consequence every delay in responding to a question or in testing a part of the
software adds to the development lead time so work is frequently started without having clear
requirements. This is clearly a problem since late clarifications usually result in rework. Similarly, user
validation might take place weeks after the developer has moved to work on new task and closer to the
release deadline, imposing a disruption that affects the developer’s productivity as well as that of those
who it might be collaborating with.

34 The systematic application of scientific and technological knowledge, methods, and experience to the design,
implementation, testing, and documentation of software. Systems and software engineering - Vocabulary,
ISO/IEC/IEEE Std 24765:2010(E)

38

The root of the problem seems to be the insufficient time allocation of science users, a management
decision, to these two critical functions and the unpredictability of the requests generated by the group,
a consequence of the lack of planning.

Technical debt

Over the years the CASA software has accumulated a large technical debt. Development of new features
is prioritized over architecting and documentation until the cost of changing and keeping the software
running makes patently obvious the need to refactor it. There is no up to date comprehensive software
documentation, the few conventions that exist are used sparingly, there is not automated unit testing at
the C++ level and the thoroughness of whatever testing is being performed is unknown. There is no
formal analysis of the impact of a change in existing or future functionality and no control of the
interfaces among subsystems. There is no defined criteria to be met before code can be committed.

The ever increasing difficulty of making changes diminish the productivity of team forcing them to take
new shortcuts, compounding this way the situation and making them less responsive to user requests.

CASA strategic vision

There is no public strategic vision and feature roadmap available to developers and users alike. In this
context, feature requests, prioritization and design are made almost in the dark. If developers knew
where the software is going and what is coming down the road they could design features today in such
a way to facilitate and not hinder future development. Stakeholders, whether internal or external, need
information about future development in order to plan their activities. Hence, the demand for an overall
view of the product and offerings is really important.

Product vs. research platform

CASA is seen by many, inside and as well as outside the CDG, as a product to do their astronomical
research or as a platform for developing new radio astronomy imaging and analysis techniques. Both
views are valid but they conflict at times. Depending on whether the software is seen as a product or as
a research platform, users and developers have different expectations and goals. As a product, users
expect3® CASA to be reliable, performant, user friendly, supported and timely delivered. As a research
platform, users are willing to live with a few bugs and harsh corners as the price to pay for having an
exciting new feature now rather than in a few months. They also understand that research is an
exploration process and so getting it right might take longer than initially foresaw.

From a development perspective, the current process does not acknowledge these differences and
mundane development is intermingled with research affecting predictability in one case and velocity in
other whit the end result of unfulfilling the expectations of both.

Competence development

Although some developers have taken the Synthesis Imaging Workshop or part of it, the assessment did
not identify any required training, either for developers to learn about the application domain or for
astronomers and scientists to learn software engineering.

35 NRAO Users Committee Report 2014, Section 3.2, September 22, 2014

39

Tools

Beside the traditional development tools such as editors, compilers, make files, and version control
system the group does not make use much of modern software engineering tools that could increase
productivity and robustness.

The common tool inventory includes SVN and Git for version control. Jenkins to lunch the build process
and two series>® of automated test cases using the Robot Framework and NOSE. Both series of tests run
at the Python level. Statement and branch coverage are reported by a NOSE Plugin but during the
assessment nobody mentioned using this information to improve their test suite.

JIRA, an issue tracking system, is at the center of the development process. It is used to assign and track
work, as a requirements management tool, as a communication tool and as a trouble report system.

The following are deficiencies worth noting:

No automated testing of C++ code

No automated testing of the user interface, although an initiative to use Selenium for this is
being considered

No use of static analysis tools such as pylint and prospector for python, nor for C++ such as
CpplLint, CppDepend, Klockwork, etc. to enforce design rules and good coding standards before
committing code

No use of combinatorial testing tools to maximize interaction testing while minimizing the
number of test cases

No language aware Integrated Development Environment (IDE)

No tool for design recovery

36 “Critical” tests run nightly and “Acceptance” tests that takes longer to run

40

Appendix B. RACI Analysis Method

This appendix provides an introduction to the RACI method.

41

Role & Responsibility
Charting (RACI)

By Michael L Smith and James Erwin

See RACI Template too.
By Sandra Diaferio

Role & Responsibility Charting

OVERVIEW
Definition

Responsibility Charting is a technique for identifying functional areas where there
are process ambiguities, bringing the differences out in the open and resolving
them through a cross-functional collaborative effort.

Responsibility Charting enables managers from the same or different
organizational levels or programs to actively participate in a focused and
systematic discussion about process related descriptions of the actions that must
be accomplished in order to deliver a successful end product or service.

Approach Definitions

\
Responsibility Charting is a way of systematically clarifying relationships
pertaining to:

1. Communication or actions required to deliver an acceptable product>
or service
2. Functional roles or departmental positions (no personal names).

3. Participation expectations assigned to roles by decisions or actions.
J

Process | Functional | Functional | Functional | Functional | Functional
Model Role Role Role Role Role

Decisions
or Actions

Page 2 of 14

Role & Responsibility Charting

THE RESPONSIBILITY CHARTING THEORY

Managers and supervisors are not accountable for everything in their
organization. Responsibility charting ensures accountability is placed with the
person who really can be accountable for specific work. Often this results in
accountabilities for actions being moved down to the most appropriate level.

Everyone has some process role in their job. Because of differing perceptions,
one person’s view of their role may be quite different than another’s. Role
perceptions held today will change tomorrow even though the job activities
remain the same. There are three (3) basic assumptions in any role. They are:

1. ROLE CONCEPTION: What a person thinks his/her job is and
' ' how the person has been taught to do

it. His/her thinking may well be
influenced by many false assumptions
(e.g., misleading titles, training received
from a predecessor during his or her
last week on the job, etc.)

2. ROLE EXPECTATION: What others in the organization think
' " the person is responsible for, and how

he/she should carry out those
responsibilities. Others’ ideas may also
be influenced by incorrect information
(e.g., the way it was at a former job,
priority changes, assumptions,
inconsistent messages from leadership,
etc.). The role expectation is usually
based on the output of results expected
from the role.

3. ROLE BEHAVIOR: What a person actually does in carrying
' ' out the job.

Page 3 of 14

Role & Responsibility Charting

Responsibility charting reconciles ROLE CONCEPTION with the ROLE
EXPECTATION and thus, ROLE BEHAVIOR becomes more predictable and
productive!. Ideally, what a person thinks his or her hob is, what others expect of
that job, and how the job is actually performed are all the same. The “RACI”
process is a tool to lock all elements in place. Working with other “process
providers” provides a real time consensus that clarifies “who is to do what, with
whom and when. This is of great benefit for overall process performance.

A substandard product or process can often be tracked back to a fault in the
chart. Common faults in the chart include: an action not included on the chart
(that should be), a position failing to perform as assigned or a missing or
misapplied responsibility code. The highly visible and collaborative nature of the
charting process promotes rapid and effective updates/corrections as well as
better understanding by those involved in the work.

DIAGNOSING THE NEED

The need for managers and supervisors to clarify roles and responsibilities does
not end after the Responsibility Charting process is complete; it must be an
ongoing activity. Managers need to acquire a “sixth sense” so they can recognize
the symptoms of role confusion and determine when the process needs to be
repeated. Perception “drift” is natural. The identification and elimination of “drift”
Is important to the company’s overall well being as it relates to cost, service and
quality.

The symptoms of role confusion are:

Concern over who makes decisions

Blaming of others for not getting the job done

Out of balance workloads

Lack of action because of ineffective communications
Questions over who does what

A “we-they” attitude

A “not sure, so take no action” attitude

Idle time

Creation of and attention to non-essential work to fill time
A reactive work environment

Poor morale

Multiple “stops” needed to find an answer to a question

Page 4 of 14

Role & Responsibility Charting

ROLES AND RESPONSIBILITIES
CHARTING DEFINITIONS

RESPONSIBLE.....”R”
“The Doer”
The “doer” is the individual(s) who actually complete the task. The “doer” Is
responsible for action/implementation. Responsibility can be shared. The
degree of responsibility is determined by the individual with the “A”.

ACCOUNTABLE.....”A”

“The Buck Stops Here”
The accountable person is the individual who is ultimately answerable for
the activity or decision. This includes “yes” or “no” authority and veto
power. Only one “A” can be assigned to an action.

CONSULT...... "C”
“In the Loop”
The consult role is individual(s) (typically subject matter experts) to be
consulted prior to a final decision or action. This is a predetermined need
for two-way communication. Input from the designated position is required.

INFORM....."I”
“Keep in the Picture”
This is individual (s) who needs to be informed after a decision or action is
taken. They may be required to take action as a result of the outcome. It is
a one-way communication.

Page 5 of 14

Role & Responsibility Charting

Responsibility Chart
The 5-Step Process

1. Identify work process
Start with high impact areas first
Don’t chart process that will soon change
Work process must be well defined

- Fewer than ten activities implies the definition is too
narrow

- Greater then 25 activities implies definition is too
broad

2. Determine the decisions and activities to chart

Avoid obvious, generic or ambiguous activities, such
as:

- “Attend meetings”
“Prepare reports”
Each activity or decision should begin with a good

action verb
Evaluate Schedule Write Record Determine
Operate Monitor Prepare Update Collect
Approve Conduct Develop Inspect Train
Publish Report Review Authorize Decide

3. Prepare alist of roles or people involved in those tasks
Roles can be individuals, groups or entire departments

Can include people outside your department our outside the
company

- Customers, suppliers, etc.
Roles are better than individual names

Page 6 of 14

Role & Responsibility Charting

- RACI chart should be independent of personal
relationships so the chart would still be valid if all
new people filled the roles tomorrow

4. Develop the RACI chart
As a general rule, first assign R’s then determine who has
the A, then complete C’'s and I's

For larger groups or more complex issues, an independent
facilitator is required

Meeting time can be significantly reduced if a “straw model
list of decisions and activities is completed prior to meeting

The ideal group size is four to ten people I

5. Get feedback and buy-in

Distribute the RACI chart to everyone represented on the
chart but not present in the development meeting
Capture their changes and revise chart as appropriate
Reissue revised RACI chart

Update as necessary on a on-going basis

A follow-up meeting may be necessary if

significant changes are made

Page 7 of 14

Role & Responsibility Charting

RACI CHARTING
An Example

Mother Father John Sally Mark Kids*
Feed the dog A C R
Play with dog | | A R
Take dog to vet R A/R C
Morning walk C A/R R
Evening walk C A/R R
Wash dog C A/R
Clean up mess C A R

DEVELOPING THE ACTION LIST

An important element of Responsibility Charting is developing the
actions to be charted and agreed upon. The lists can be developed in
several ways. One effective way to gather information on functions,
decisions, or activities is in a one-on-one interview. This interview is an
analytical questioning process and ranges from broad questions such as
“what are the department’s objectives?” or, “what must the team
accomplish?” to very specific questions involving inputs and outputs of
work, to and from the participant.

An alternative to the interview is a group “brainstorm” or idea generation
technique with representatives from the “process participant”
departments. A facilitator would record the actions which then could be
fine-tuned in subsequent group meetings.

Page 8 of 14

Role & Responsibility Charting

R A C | Chart Review
Vertical Analysis

Finding Possible Interpretation
Lots of R’s Can this individual stay on top of so much?
No empty spaces Does the individual need to be involved in so

many activities?

Too many A’s Can some of the accountability be “pushed
down” in the organization?

No R's or A’s Is this a line position? Could it be expanded or
eliminated?
Overall pattern Does the pattern fit the personality and style of

the role occupant? Does it go against the
personality type of the role occupant? (i.e.,
either too much or too little involvement, etc.)

Roles / People

De(.:is.i.ons/
Activities
C A C I
A | R C I C
C I R | A
R A
I A | C
A I R C
A | C | R I

Page 9 of 14

Role & Responsibility Charting

R A C | Chart Review
Horizontal Analysis

Finding Possible Interpretation

Lots of R’'s Will the task get done?

Can activity or decision be broken into more specific tasks?

Lots of C's Do all these individuals really need to be consulted? Do the
benefits of added input justify the time lost in consulting all these
individuals?

Lots of I's Do all these individuals really need to be routinely informed, or

could they be informed only in exceptional circumstances?

No R’s Job may not get done; everyone is waiting to approve, be
consulted, or informed; no one sees their role as taking the
initiative to get the job done.

No A’s No performance accountability; therefore, no personal
consequence when the job doesn’t get done. Rule #1 in RACI
charting: There must be one, but only one, “A” for each
action or decision listed on the chart.

NoC's/I's Is this because individuals/departments “don’t talk”?

Does a lack of communication between individuals/departments
result in parallel or uninformed actions?

Roles / People

De(.:is.i.ons/
Activities
C A C I
A | R C I C
. C I . R | A
I A | C
A I R C
A | C | R I

Page 10 of 14

Role & Responsibility Charting

R AC 1 Closing Guidelines

. Place Accountability (A) and Responsibility (R) at the
lowest feasible level.

. There can be only one accountable individual per activity

. Authority must accompany accountability

. Minimize the number of Consults (C) and Informs (1)

. All roles and responsibilities must be documented and
communicated

. Discipline is needed to keep the roles and responsibilities
clear. “Drift” happens. RACI has to be revisited
periodically, especially when symptoms of role confusion
reappear e.g.,

Concern over who makes decisions

Blaming of others for not getting the job done

Out of balance workloads

Lack of action because of ineffective communications
Questions over who does what

A “we-they” attitude

A “not sure, so take no action” attitude

Idle time

Creation of and attention to non-essential work to fill time
A reactive work environment

Poor morale

Multiple “stops” needed to find an answer to a question

Page 11 of 14

Role & Responsibility Charting

When To Use Responsibility Charting
- To improve understanding of the roles and
responsibilities around work process

§ “As Is”
§ “To Be”

- To improve understanding of roles and
responsibilities within a department

. To define the roles and responsibilities of
team members on a project

Page 12 of 14

Role & Responsibility Charting

ROLES AND RESPONSIBILITIES CHARTING

Trying to get work done without clearly establishing
roles and responsibilities, is like trying to parallel park
with one eye closed.

/g/[m‘f@
/

What about role behavior? The RACI chart shows who does
what at a high level and their RACI role. If more specificity is
needed, and it often is, you can use process maps or list the
steps/decisions and document the specifics of what is done.

You can go from process maps to RACI or RACI to process maps

Page 13 of 14

Role & Responsibility Charting

Or, you can document your understanding of the role behavior by
taking the list from the RACI chart and listing the steps/decisions
and documenting the specifics of what is done. It's as simple as
who, what, when, inputs and outputs. You can expect more
resistance clarifying the roles this way than just with RACI. We
now know who is to do what with whom, and when in such a way
that each person is truly accountable for their part of the overall
process.

Task / RACI | Who What When Inputs | Outputs
Decision from to

Page 14 of 14

Appendix C. CASA Notional Workflow

The notation used to describe the CASA Notional Workflow is called IDEFQ. The basic element of an
IDEFO model, as illustrated by Figure 11, is a box containing a verb phrase (e.g., “execute project”)
describing the activity or transformation that takes place within the box. In IDEFO syntax, inputs are
shown as arrows entering from the left side of the box, while outputs are represented by arrows exiting
from the right side of the box. Controls are displayed as arrows entering the top of the box and
mechanisms are displayed as arrows entering from the bottom. Inputs, controls, outputs, and
mechanisms (ICOMs) are collectively referred to as “concepts.”

Controls

Impose a constraint on how or
when the activity is performed.
Examples: A day of a week, a
process or policy

Outputs
Work products, deliverables.
Examples: A new product, a design
| > Execute Project .
nputs » >
Things that are
transformed into
outputs. Scope of
work, materials.
Mechanisms

Tools and resources necessary to
perform the task. Examples: project
manager, qualified staff, Microsoft
Project.

Figure 11 IDEFO Diagram

IDEFO models are organized hierarchically. The high-level activity is represented by a shadow-edged box.
The concepts entering or leaving the box at the higher level are “consumed” or “produced” by the
lower-level activities. There is no need to match every lower-level concept with another at a higher
level. This “tunneling” in IDEFO terminology helps improve the readability of the diagrams by allowing
for details to be shown where appropriate. Complete information about the IDEF family of methods can
be found at http://www.idef.com.

56

|euononN

T Bd HequnN wswdolPAaqg VsSY) oL 29 -apoN
o
ov

4 ov
b pJe23100S pasue|eq
<

uone|easa
<

uo1Ie JALIDII0D (¥¥) 3senbau yoseasal
<4

Sunuodau (¥23) 1senbau a8ueyd mc_._owc_mcww
<

uonisodsip |euy Y\ VSvD (¥D) 1senbau wm:msuw
<

(SND) AsAuns Jasn sy (¥g) Modas 8nq
<

14odaus yoseasald Nek) _owum_ac._ouw
<4

92130U 3sed|ad |eadde:
4
b uonisodsip YM cormuc:m_uw

) so1e|dwia) g saidijod |euoneziuedio
uonealand €2:07:€0 BWIL 0T68L9G7€CT :Sal0N
papuswwoday
yeig oY MO[PJIOM VSVD :08l01d
XaWod 31va H3avad BUBiom | X 5T02/62/6 :o1ed EpuUBlliA opJenpy Joyiny v pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

Z bd usquinN

VSVJ 0V

BpL

€0

:3poN

+eu-

ouel|dwod-Uow

saniunyoddo”

SND pareIdwor”

p ?dueInssy
pie291035 pasueleq
«
N Ayjenp
«
R(sno) Asmns 1ssn ysyo
—
PRS-
> T
9V
dewpeoy ysy:
|
umposprion? | SUIIADIS
«
oo as sy
<

uonisodsip euy ¥

-

(y8) 1odos Sny

“Rsyysisur pue suojuido ‘suonenasqo

PS

9210 seajs

Aojdaq
8 pIing

jeadd

[
san1 uisa) wawAheday

192a
|eatuyaaL

a0} 559201

uogelBWINIOP USISIp?

——
—

3[npays Jarsew

ﬁ

-

(y8) odas Bng

]

(403) 153nbas 28ueyo Supzauidu:

smmedar | JusWidoanag

Sa5ne0 1005 auljadid
. 5998.) 5592040 uw <W<U
guniodas
e Jepualen asinosas
Hodaiy = J——-——
o ;
w
(4g) 10da1 8nq
¥g |eonis” (¥23) 159nba1 98ueys BupaauIBua”
3foid ypieasas Jawageuepy ¢
193l040°
qoP PEOPIIOM (¥D) 359nba a8uey
. S90e13 5592010 (4y) 159nbai yoreasar
Ruonsodsip ym 1 uogesyLey
% v
w
Juawanosdw|
pEr=—r: 5590044
5998.) 5592040
Apey) sarejdway g sapijod [euoneziues
uonealand 90:50:¥T BWIL 0T68L9SVETT :S8I0N
papUSWWOIaY
yeig oY MO[PJIOM VSVD ;1000014
IXsuoo 3lva d3av3y Buppiop | x GT0¢Z/9¢/6 ‘®red -oyiny Vv pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

¢ Bd JoquINN uawanoidw| ssa20.d TV oL 719 ‘9PN
1424
A% $5300.14 M3N zi|euonninsu| AR
€TV
juswisn(pe 3oeqpasy
$59204d 10|Id
ssado.d _um:_m_u__m>W _)
v
$59204d anoldw|
ss9001d Mau”
v
saplunyioddo
sjesodoug s9|nJ ugdisap
S Juawanoidw| dojans
|esodoud Juswanosdwit teorenad 9oueldwod-uou
<
sjuaWaInseaw S95Ned 3004
) so1e|dwia) g saldljod [euoneziuesy
saonoeud 159¢
uonedland YEZEET PwIL 0T68L9GV€CT :S8I0N
papuswwodsy
yeig oY MO[PJIOM VSVD ;1000014
Xau0) 31va d3avay Bupiop | X GT02/92/6 :8red -loyiny WV pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

¥ Bd uequinN Juswageue|y Peo|}IOM 7V B %0 :9pON
,
Jepus|ed 924n0Sal
3|Npayds Jaisew
1444 h
v
All[1qe[1EAR S22IN0SDI [BUIIIXD
103[04d Yoieasay a|npayods
1 e
€y
g€y
129[04d 9|npayds
wv
dewpeoy vsv)
qor a|npayds
v
4 Tev
A 309(oud
A |
109(04d yaueasau (4y) 1s9nbau yoseasal
4
h uonisodsip YM (¥D) 3senbau adueyd
4
N qof 159nbay YJoM ozAjeuy (4g) 1odas 8nq
4
h ¥g [ea014d (¥23) 3sanbau a8ueyd SuuasuiBus
4
Rum 913|dwooul UM Pa4apISuodal
4
Bum SEREIEY] uoyeayle|d
uopeawniop ugisap
uorealand 90:8G'GT :dWIL 0T68L9SVETCT 'S810N
papuswwodsy
yeig oY MO[PJIOM VSVD ;1000014
Xau0) 31va d3avay Bupiop | X §T0Z/92/6 -8red -loyiny WV pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

G Bd equnn 1sanbay yioM azAjeuy TV oL %) :9poN
|
151U319S 193(0ud 198eue|A 193(04d +edlf:
Jadojeansg
4 STev
N 109(04d yoseasau
4 sanba! “——
h j09(oud ¥ Y
Mo Apisse|d
4 <
ol
14144
UM PaJapISuodal
1sanbay
arewns3 (H1ys-1)
wN_mw
€TV
159nbaJ Jom pajesoqe|d uopesyle|
1sanbay a1eloqe|3
Jepua|ed 924n0sal
wt 9|NPay2s Jarsew
ey
UM pausisse
1s9nbay udissy
4
Ryg jeonin
14%4
TV
Y/ PanaA (¥23) 31senbau a8ueyd Suiaauidua
4
N Y pa310afau Anjenp (¥y) 31senbau yosessau
4
N uonisodsip YM 159nbay Ajian (¥D) 1senbau a8ueyd
4 ¢
N ¥ 219]dwodul N (¥g) 1odas 8nq
uopeusawnIop udisap
uorealand GP:8G'GT BWIL 0T68L9SVETCT 'S910N
papuswiwosay
yeig oY MO[PJIOM VSVD ;1000014
Xajuod 31vd d3av3d Buppiop | x GT0¢Z/9¢/6 ‘®red Joyiny WV pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

9 6d aqunN Avjenp 1sanbay AjlIaA 1 TTTVY oL 90 :9pON
1991121y 31BMYOS: 1s1UaS 1I3(01d ysa@ d|sH +ellf
h '
LTTCY
423 ponen’
Sumap
|eatuyda)
9TTCV
-
r 4D panan Suman aouaps ¢ \
7 p
4y panen
A STTCvY
YM pa1dafal
&
Ruonisodsip ym Suman
H g [B211II-UOU PANAN Aunqnpouday
4 1 1 A
Rym penan Y [BLIIO PIRAN
141714
Y23 919|dwo uww:_umm
9?8uey)
Suneauidu3
>t‘_®> (423) 3senbau a8ueyd SusauiBu
€TV
Yy 219|dwod umws_uwm_
yaieasay
Ajluap (4y) 3sanbaJ yoeasal
ey
YD @19|dwod
1sanbay
98uey) Ajuapn
(¥D) 1s9nbau a8uey’
Tty
yg 919|dwod
Hoday
4 3ng Ajluan
N YM 919|dwodul (¥g) 1odas 8nq
uorealand GE100:0T :BWIL 0T68L9GVETT 's8l0N
papuswwoday
yeig oY MO[PJIOM VSVD ;1000014
a0 3iva 43av3ayd Bupiop | X GT10¢/9¢/6 dred HJoyiny WV pasn
ST0Z/62/6 :91eQ ‘MO|NIOM VSYD :Alolisoday

|euononN

L Bd uaqunN 199[04d 3NPaYIS g2V apiL 629 apoN
Ja8eue\ 1oa(0ud 9|Npayds Ja1sew
Jepus|ed 324nosal
Jadojanag
[4344
4
h Y/M paudisse
|enosddy 109(0ud
4 ¢
“Suonisodsip ym
TeETY
dewpeoy vSvd
xogawl] 30afoid auyaq
xogawl ‘Ayunyioddo jo >>o_oc_>>W 109[oud
uorealand ZT:GOET duwIL 0T68L9SVETCT 'S910N
papuswwodsy
yeig oY MO[PJIOM VSVD ;1000014
Xajuod 31vd d3av3d Buppiop | x GT10¢/9¢/6 dred Joyiny WV pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

]

109l0.d Yd4easay 3|nNpayds vy

g bd aquinN BIL 620 ‘9PON
1a8eue|\ 103f0ld Jepu3|ed 32IN0Sal
3|npayds Jaisew
Jadojansg
eV
P
h Y/M pausdisse
|enoaddy 109(0ud ydieasay
P ¢
“uonisodsip ym
dewpeoy vySy)
xogawi] 3103f0ld Yoieasay auyad AJ[IgE|IBAR SBDINOSAI |BUIDIXS
xogawl ‘Ayluniioddo jo >>ouc_>>W 109(0ud ydieasau
uorealand 20'GYIGT :ewIL 0T68L9SVETCT 'S910N
papuaWWoday
yeig oY MO[PJIOM VSVD ;1000014
XaWod 31va d3avad BUBIOM | X 5T02/92/6 :ored EpuUBlliA opJenpy Joyiny v pasn

S102/62/6 :21Q ‘MOINIOM VSYD :Alolisoday

|euononN

A 1Jodau youeasas

21n29x3 3 ueld

6 bd aqunN Juawdo|anaq auljadid @ YSVD €V [L Vio) :9pON
+edlr 3|Npayds Jarsew 19
SuBjuar
|00] sisAjeuy urmum\\
—
SEv
4 SEV
A sapiunyioddo
4
WRsasnes 1001 anadsoay
1434
K vev
sjy8isul pue suoluido ‘suoii
4 109(0ud yoieasay

€ev

€ev

sy8isul

pue suojuido ‘SUoleAIaSqO

4

109[0.1d 93n29X3 g ue|d

193(04d youeasau

T T T =

s1y8isul pue suoluido ‘suonealasqo

I
9p02 Ajjpws

qor @3ndax3

h (4g) 1odau 8nq

109(0ud

qof

Tev
H Tev

9pod Ajjpws’
|

sySisul pue suojuido ‘suoleAlasqo

< 8ng |eanu) xi4
N (423) 3sanbau a8ueyd Suusauidus
P AJ
A Supuodau ¥g |eanud
uopeusawniop usdisap
saopoeud 159q Japuiwai sa|nJ udisap
uorealand LT:8G'ST duWIL 0T68L9SVETCT 'S810N
papuswwoday
yeig oY MO[PJIOM VSVD ;1000014
X8u0) 31va d3aavad Bupiop | X GT02/92/6 :8red Joyiny WV pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

0T Bd equinN 8ng |eon) xi4 TEV BpL 920 :9pON
|
Supuaf- U9~
|ooy sisAjeuy d1eis
LTEVY
1sanbay a8uey)
< (4D3) ¥59nbau a8ueyd BuLaBUIBUS Suaaui8ug] A
Hwqgns
9TEvY
Jieday
—
STEV
3pod Ayney
paida4i0) 3q
0} 9p0) 9z1|e207
A 9p02 Ajlpws
14534
punosexJom g
dojanag
€TEevY
ejep dmyoeq;
suoRIY
. Alanooay
N eIep paloisal
ey
wa|qoid
wa|qoud
pueisiapun
T1ev
uoneinsyuod ummum_w
w?a|qoud
91e01|day
4g pajeoy|dar ug [ea157
s9|nJ usisap- uoLeUAWNIOP USISap~r
uonealand 8T:6G:GT BWIL 0T68L9GV€CT :SSI0N
papuswwoday
yeig oY MO[PJIOM VSVD ;1000014
X8u0) 31va d3aavad Buppiop | x GT0Z/9¢/6 -8red Joyiny AV pesn
ST0Z/62/6 :@1eQ ‘MOIBOM VSYD :Alolisoday

|euononN

11 bd equinN qor aanJexy t¢ev oL ¥20 :8pON
1s1uaIs 1930014 001 sishjeuy dneis: V%_msa 3|npayos sa1seW
o
-
6ZEV A
AJ
Hwwoy
e
8TEY
ased 1533 Aioelojdxa””
seed e sjepiep &
< (4g) Hodal 8nq ¢
LTEV
mamay
ssed (e A
9zeY
sonewatmaop
7 ﬁ juawnaoq
pryTTT————— A
STEV
s3uluIem g SIL1IBL BP0
azAjeuy
ssed 1o ¢
ﬁ jz434
28esano:
ase %;JW AJIan
ssed 1e” ¢
ETEV
s1s9]
dojanag
prempe= H
f4434 =
qof
‘|\
9pod
p —
1€V
qor uels
sajnu uBisap-
uoneIuBWINI0p UBISIP—r| Japuiwal
uoneoland TZ:6G:GT BuWIL 0T68.9SVECT 'S910N
papuaWWooay
yeig oY MO[PJIOM VSVD ;1000014
IXsuoo 3lva d3av3y Bunpiom | x GT0Z/9¢/6 -8red -oyiny AV pesn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

21 Bd :aqunN 103[04d 91N23X3 g UB|d (EEY L 80 :9poN
-~ -~ -~
TEv/auawdojanaq Sy~ TEV/aWdojaAIQ VSV~ TEV/awdojaAaq YSYI~ 3|npayds Jaisew
BEEV
SIUOISAYIN ¢
1suledy yoeu|
snjels
LEEY
sagueyd ugisap’
aneHq
pino) dojanag
pa13|dwod aney p|noa ||e’
9EEV
sadueyd ugisap’
9ABH p|noys
dojana y
pa13|dwod aney pInoys ||e’ _ a
SEEV
sadueyd usisap’
aneH
7 1snA dojansg
pa19jdwiod aney Isnw |[e 7
14334
12314
34 aAeY ISNUF
34 aney pjnoys’ 109l04d ue|d
34 aAeY pINoOY
EEEV _
udisaqg
ugisap
[4334
sainieaq
(34) saunjeay au £QD ﬁm.—oa_\
TEEY
109[04d
HOMPN
uopejuawnoop ugisap-~
BETJV[VVIEYS s9|nJ usisap: Japulwial
uonealand 9Z:6G:ST BWIL 0T68L9GV€CT :S8I0N
papuswwoday
yeig oY MO[PJIOM VSVD ;1000014
X80 31va d3av3d Buppiop | x GT0¢Z/9¢/6 ‘®red Joyiny Vv pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

]

p9fo.d ue|d YEEY

€T bd equinN BIL 60 :9poN
yreEEY «
SQUO1SI|l|N ue|d
Sauolsa|lw
EVEEY
saliARoe uonedniw v_m__W sysiY Ayauap|
< Treey
34 9ney 3snw
4
X34 aney pinoys
4 salniea{ azulold
h 34 9AeY p|nod ugisap
4
b 34 9AeY },uom
TrEEY
34 palewnsa saJnjead ajewns] (34) saanjeaq
uorealand OT:8Y:ZT :duwIL 0T68L9SVETCT 'S810N
papuswiwosay
yeig oY MO[PJIOM VSVD ;1000014
Xauo0D 31va d3aavad Buptiom | X GTOZ/92/6 :8¥ed Joyiny IV pasn

ST0Z/62/6 :91eQ ‘MO|NIOM VSYD :Alolisoday

|euononN

T Bd JequinN 103[04d YoJeasay 91ndax3 R ueld eV el 010 :9pON
|
Jageuep 103foid Jadojanag Josuods 3|npayas Ja1sew
Japeat dnoun ySyo~ O~ 18URIS 13014
I .
i3
MEUH 1sanbau a8ueyd
1sanbay
¢ 23uey) alIM
(4y) 3sanbau yoieasas
Svev
&
Ryodas Yoieasas uoday QMM
ﬁ ey
auop JUBWSSISSE JUBWIWWOD Josuods”
Pl
Rajeujunay 3
MB3INRY 91e3||0|)
sasaylodAy >>m_>w‘_w
, ¢
anunuos’
Evev
Suluies|
1Nnpoid 3|qeIA
wnuwiul dojaasqg
awono
ey
©119}11D UONEIYLIAN
sasayjodAH
ﬁ 91e|nwJoS
Ajjigeded pauoisiaue y9loud .‘_u_mwmm‘__\
eV
109[04d
yoJeasay HO-N
uoueuaWNIOp USISap J9pulwal
uorealand LT6G'ST BuwIL 0T68L9SVETCT 'S810N
papuswwoday
yeig oY MO[PJIOM VSVD ;1000014
a0 3iva 43av3ayd Bupiop | X GT10¢/9¢/6 dred HJoyiny WV pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

GT Bd JequinN

aAL3ds0.419Y (SEY

s9opoeud 159

$S9204d M3IAlY

3M 340M 1eys sSulyy

B €10 ‘SPON
+eJIf:
14134
4 1sanbay asuey)
(¥23) 1senbaus a3ueyd Sulsauidus SuLIPaISUT 1M 9pod Ajjawis
€GEV
SNJ pa1e|dwod
jJusawanosdw|
Joj sajunyoddo
Ajnuap)
4 <
A saplunyioddo
[43
JudWAINSesaW duewlopad
sishjeuy
|esne) 309423
4
sasned 100.
TGEV
340OM J0U pIp 1ey) sSulyy
ouUewW.IOd

s1ySisuj pue suoluido ‘suopeAlasqo

SyJewyouaq saoljod |euoneziuest
uorealand £V:8€:ZT BWIL 0T68.9S¥ECT :S310N
papuaWWoday
yeig oY MO[PJIOM VSVD ;1000014
1Xalu0D 31va J3avad BUDHIOM | X GT02/9z/6 :@red souyiny v pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

9T Bd JequinN juswAeday 19aq [ed1uyd3] HY AL 02D :9pON
-~ , ,
ZEv/auawdolanag vsyd 1091YdJY 9JeMYOS
U9 \\\
|00] Sul9auldusay
14
sase) 1s9) dojanag
¢
v
aloud™
qof™~
Sunioloesy
evv
9p02 auoud JoJid
f L
9pod 3|nejon Ajlysiy apo) azAjeuy
9p0d 98e19N0d MO|
wv
<
s9|nJ udisap sa|ny udisaqg aJnpoud
v h 4 v
v
4
A uopeuswndop udisap ugisaQ 19n023Yy
uorealand G0'8G'ST :dwIL 0T68L9SVETCT 'S810N
papuswiwoday
yeig oY MO[PJIOM VSVD ;1000014
Xaoo 31va d3av3ad Bupiop | X GT02/92/6 :8red Joyiny WV pasn

ST0Z/62/6 :91eQ ‘MO|NIOM VSYD :Alolisoday

|euononN

]

Aojdaq = p|ing :5v

LT Bd :equinnN BL 610 ‘9pON
SuIuaf-
i)
LSY
¢ uoday —
(49) 1odas 8ng Sng WM
9sv
P
A CRIVCIVENCETEY] 9ses|9y
Sev
Aojdag
—
SV
ssed
s1s9|
pajewoiny uny _
ssed ou
€SV
Aseuiq
ssed Nur] g 9jidwo)
ssed ou
[434
ssed
sisAjeuy oneis
ssed ou
eV
159} pajewoine S1Sa] ajewolny _ ased umwuw
uoIsIDap JusWaTeuew
uonedland Z0:0G:€T dWIL 0T68L9SVETT :s810N
papuaWWoday
yeig oY MO[PJIOM VSVD ;1000014
Xajuod 31vd d3av3d Buppiop | x GT0¢Z/9¢/6 ‘®red Joyiny Vv pasn
ST0Z/6T/6 :218Q ‘MOIBIOM VSYD :Alonsoday

|euononN

8T Bd uequinN 3ula1S VSV 19V emL 0€0 :opoN
Jepus|ed 324n0sal
9|NPaYIS Jsew
€9V
4
h dewpeoy ySyd dewpeoy ySyD aJedald
79V
4
HM pajspisuodal
|eaddy anjosay
4
uonsodsip |euy YM |jeadde
19V
2oue|dwod-uou
uondyY aAldL8.II0) el pJe33103s paduejeq
4
uoLo. 3ARIDII0D SND paia|dwod
uorealand ZETYIED BuwIL 0T68L9SVETCT 'S810N
papuaWWoday
yeig oY MO[PJIOM VSVD ;1000014
xeon 31va g3avad BUBIOM | X ST0Z/62/6 @1ed BpueliN oplenpy Joyiny v pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

|euononN

6T Bd aquinN ouednssy Aujenp /vy apiL Yo 5pON
19
SLVY
4 ssa20.d
pJ4e23400S padue|eq WBWBINSED SjusWaINSeaW
VLV
<
UuoLOe SALIBII0D swa}) uonde uado
sanss| aoueldwod-uoN
JO uolIN|osay ainsu3
4 pue a3ed1unwwo) ¢
h uone|easa
4 €LY
Rsasnes 001
4 uonodejsnes
sapiunyioddo J2WO0ISND) JOHUOIN
<
(SND) AsAuns Jasn ysyD SND paisjdwod
[4A
4
b 9oueldwod-uou s9oeu] ssadoud
2oueldwo)
$539204d 93eNn|eAy
LV
sassasoud
s1onpoud
3JOMN d3en|eny
s30npoud 3Jom
uorealand LS'9G'ET BUWIL 0T68L9SVETCT 'S910N
papuswwodsy
yeig oY MO[PJIOM VSVD ;1000014
Xajuod 31vd d3av3d Buppiop | x GT0¢Z/9¢/6 ‘®red Joyiny Vv pasn

ST0Z/67/6 :@18Q ‘MOIPOM VSYD :AJolisoday

Appendix D. Definition of Done

This appendix presents a notional DoD for a “Job”. It is intended to be used as example as not as a
concrete recommendation. Similarly the CDG should define DoD for projects and other artifacts as they
see fit.

Once defined, DoDs strict application will be critical to overcoming the concerns raised by the Pipeline
Group about the condition the software will be in when moving from a discrete to a continuous delivery
mode.

Example:

e Code produced (all “to do’ items in code completed)

e Code commented, checked in and run against current version in source control

e Peerreviewed (or produced with pair programming) and meeting development standards
e Builds without errors

e Unit tests written and passing

e Deployed to system test environment and passed system tests

o Passed UAT (User Acceptance Testing) and signed off as meeting requirements

e Achieved X% branch coverage

e Any build/deployment/configuration changes implemented/documented/communicated
e Relevant documentation/diagrams produced and/or updated

e Tasks closed in Jira

76

Appendix E. Buffered Moscow Rules

This appendix depicts a planning method for time boxed projects. It is intended to be used as example
and not as a concrete recommendation.

77

Eduardo Miranda®© 2011

TIME BOXING PLANNING: BUFFERED
MOSCOW RULES

EDUARDO MIRANDA, INSTITUTE FOR SOFTWARE RESEARCH, CARNEGIE MELLON
UNIVERSITY, SEPTEMBER 2011

Keywords: Time boxing planning, prioritization rules, release planning, agile, incremental delivery,
requirements prioritization, design to schedule

ABSTRACT

Time boxing is a management technique which prioritizes schedule over deliverables but time boxes
which are merely a self, or an outside, imposed target without agreed partial outcomes and justified
certainty are at best, an expression of good will on the part of the team. This essay proposes the use of a
modified set of Moscow rules which accomplish the objectives of prioritizing deliverables and providing
a degree of assurance as a function of the uncertainty of the underlying estimates.

INTRODUCTION

Time boxing is a management technique which prioritizes schedule over deliverables. This means that if
during the execution of the task it is anticipated that all requested deliverables will not be ready by a set
completion date, the scope of the work will be reduced so that a smaller, yet still useful, output is
produced by such date. The two dimensions of the time box are the length of time it is given and the
resources available during that time. The time box concept can be applied to individual tasks and single
iterations but the focus of this proposal is in larger aggregates, such as a release or a project,
culminating in the delivery of an agreed functionality to a customer.

Eduardo Miranda®© 2011

To be effective, time boxing requires that (Miranda, 2002):

1. The features or user requirements’ that make up the total delivery are grouped into functionally
complete subsets;

2. The subsets are prioritized so it is clear which requirements should be implemented first and
which ones could be eliminated if there is not enough time to complete all of them; and

3. Reasonable assurance is provided to the customer about the feasibility of a given subset within
the imposed frame

Time boxes which are merely a self, or an outside, imposed target without agreed partial outcomes and
justified certainty are at best, an expression of good will on the part of the team.

Prioritization is traditionally made by asking the customer to rank his or her preferences into a series of
categories such as “Must have”, “Should have”, “Could have” or “Won’t have” where the “Must have”
category contains all requirements that must be satisfied in the final delivery for the solution to be
considered a success. The “Should have” represents high-priority items that should be included in the
solution if possible. The “Could have” corresponds to those requirement which are considered desirable
but not necessary. They will be included if there is any time left after developing the previous two.
“Won’t have” are used to designate requirements that will not be implemented in a given time box, but
may be considered for the future. These categories are commonly known by the acronym “Moscow”
(Stapleton, 2003). Less used techniques include the pairwise comparisons, cumulative voting, top ten
requirements and EVOLVE (Berander & Andrews, 2005).

With the exception of EVOLVE (Greer & Ruhe, 2004) which uses a complex search procedure to
maximize value within the constraints imposed by the available resources; all the techniques above
suffer from the same problem: they are either unconstrained or arbitrarily constrained. For example in
the “top ten” technique the “must have” would be limited to the 10 more important requirements. Why
10? Why not eleven or twelve or nine? This lack of constraints means that in general, as long as the
aggregated effort is within the project budget there is no limit to the number of requirements that are
assigned to the “must have” category with which the prioritization process ends up not prioritizing
anything at all.

In this article we describe a simple requirement prioritization method that: 1) Redefines the MOSCOW
categories in terms of the team’s ability to complete the requirements assigned to them; and 2)
Constrains the number of requirements that the customer can allocate to each category as a function of
the uncertainty of the estimates which makes it possible to give the sponsor certain reassurances with
regards to their achievability or not. The MOSCOW categories are redefined as follows:

1. Must Have: Those features that the project, short of a calamity, would be able to deliver within
the defined time box

! These two terms will be used loosely and alternatively to refer to a discrete capability requested by the sponsor
of the work

Eduardo Miranda®© 2011

2. Should Have: Those features that have a fair chance of being delivered within the defined time
box

3. Could Have: Those features that the project could deliver within the defined time box if
everything went extraordinarily well, i.e. if there were no hiccups in the development of
requirements assigned to higher priority categories

4. Won't have features, those for which there is not enough budget to develop them

Therefore, the fitting of requirements into these categories is not an a priori decision but rather a
consequence of what the development team believes can be accomplished under the specific project
context and budget.

In the past | have associated a delivery probability of 90, 45 and 20% with each of the categories, but
this quantification it is only possible if one is willing to make assumptions about the independence or
covariance of the actual efforts, the number of requirements included in each category and the type of
distributions underlying each estimate; or to use a method such as Monte Carlo simulation to expose
the distribution of the total effort for each category. If we are not willing to make this, quoting specific
numbers is just an analogy, all we can justifiable say is that the likelihood of delivering all requirements
in the “must have” category would roughly double the likelihood of those in the “should have” category
and quadruple that of those in the “could have” one.

THE IDEA

The process requires that each feature or requirement to be developed has a two points estimate’: a
normal completion effort® and a safe completion one. The normal completion effort is that, which in the
knowledge of the estimator has a fair chance of being enough to develop the estimated feature while
the safe estimate is that which will be sufficient to do the work most of the time but in a few really bad
cases.

If we wanted to be reassured of being able to deliver all features under most circumstances we would
need to plan for the worst case, which means scheduling all deliverables using their safe estimate. This,
more likely than not, will exceed the boundaries of the time box*. See Figure 1.a.

It is clear that by scheduling features at the safe level, the most work we can accommodate within the
time box boundaries is that depicted by the patterned area in Figure 1.b. So for the “must have”
category the customer must select, from among all requirements, those which are more important for
him until exhausting the number of development hours available while scheduling them at the safe

> More sophisticated approaches such as Statistically Planned Incremental Deliveries — SPID (Miranda, 2002) will
require three points estimates and the specification of an underlying distribution

* As 1 did in the redefining of the MOSCOW categories in this article | am avoiding the temptation of calling these
estimates the 50% and the 90% probability estimates to prevent giving a false sense of mathematical exactness,
that will require the making of additional assumptions or an analysis that might not be justified by the practical
impact of the added accuracy and precision.

*If a single project had to ensure against all possible risks and uncertainty, its price would be prohibitive
(Kitchenham & Linkman, 1997)

Eduardo Miranda®© 2011

effort level. This is the constraint missing in other prioritization methods and the key to provide a high
level of confidence, in spite of the uncertainty of the estimates and the speed of execution, in the
delivery of features in this category.

Once the “must have” requirements have been selected, we will re-schedule them using their normal
estimates, see figure 1.c, and reserve the difference between the two effort levels as a buffer to protect
their delivery. We will repeat the process for the “should have” and “could have” requirements using
the size of the buffer protecting the previous category as the initial budget for the current one, see
figure 1.d. The requirements that could not be accommodated in any category at their safe level
become the “won’t have”s.

Time box

Startup activities Other support and management activities
a.
b Startup activities Other support and management activities

Lower priority deliverables
c Startup activities Other support and management activities
Lower priority
deliverables
Startup activities Other support and management activities
€.
Could have:

Figure 1 How the method works

We can see now why we said at the beginning of this essay that the “must have” category will have
double the likelihood of being completed of the “should have” and quadruple that of the “could have”.

We are almost certain that all the requirements in the “must have” category can be completed within
the time box because a requirement was only included in it if there was enough room to develop it
under a worst case assumption. The “should have” category also have their requirements scheduled at
the safe level, but with respect to the overall time box this level of confidence is contingent on the sum

Eduardo Miranda®© 2011

of the actual efforts spent on all the requirements in the “must have” subset being equal or less than the
sum of their normal development times. This roughly halves the likelihood of completing all “should
have” requirements within the time box. Similarly the likelihood of completing all the “could have”
would be half of that of delivering all the “should have” or a quarter of the “must have”.

A NUMERICAL EXAMPLE

Table 1 shows the backlog for an imaginary project with a total budget (time box) of 180hrs. Assuming
that the startup, and the support and management activities require 60hrs. leave us with a development
budget of 120 hrs. The table lists the name of the features, the normal and the safe estimates and the
name of other requirements or features in which the current one depends on. For example feature “H”
will have a normal estimate of 10 hours, a safe estimate of 20 hours and depends on “J” and “K”,
meaning that these two features must be present for “H” to provide any business value.

Table 1 Product backlog

m Normal Estimate | Safe Estimate

Let’s assume that from a pure business

E 7 490 - perspective the preferences of the project
20 30 sponsor are: F,D, A, G, K, E, L,J,H,1,B,C.In
[D | 5 7 E a real project this choices will be made

| E | 6 7 during the prioritization meeting.

| F 5 6

| G| 20 40 In our example, the first requirement to be
“ 10 20 LK selected for the “must have” category
= 1; i(s) would be requirement “F”, applying the
“ 3 10 process described below we have:
L 10 18

AvailableBudget; ., = AvailableBudget; — SafeEstimate; = 120hrs — 6hrs = 114hrs

Successive requirements are selected as per table 2. Notice that feature “G” cannot be included in the
“must have” subset at the safe level because it does not fit into the available budget. At this point the
customer must decide whether to resign “G” to another category, if possible, or rearrange the previous
selection. For the sake of the example let’s assume requirement “G” is passed on, and the customer
chooses “K” which follows in his rank of preferences and is schedulable in the available budget.

Eduardo Miranda®© 2011

Table 2 Assigning requirements to the “must have” category
m Reason for selection | AvailableBudget; | SafeEstimate; | AvailableBudget;.,

Customer preference,
Dependency

After including “K” there is no other requirement that can be included in the “must have” category, so
requirements F, D, E, A, B, C, and K are re-schedule at their normal level:

MustHaveBudget = Z NormalEstimate; = 5+ 5+ 6 + 20 + 7 + 20 + 8
i€{F,D,E,AB,C K}
= 71hrs

MustHaveBuf fer = AvailableBudget — MustHaveBudget = 120 — 71 = 49hrs

The process is now repeated using the MustHaveBuf fer as the available budget for the “should have”
CATEGORY, see table 3, and the ShouldHaveBuf fer for the “could have”. See table 4.

Table 3 Assigning requirements to the “should have” category
m Reason for selection | AvailableBudget; | SafeEstimate; | AvailableBudget;.,

Table 4 Assigning requirements to the “could have” category

B) T I

After including “L” nothing more could be included in the available effort at the safe estimate level and

MJ ”

in consequence “H”, “I” and “J” are declared “won’t have”.

Eduardo Miranda®© 2011

The final subsets are:

e Musthave:F,D,E A,B,C K
e Should have: G

e Could have: L

e Won'thave:H, I,)

EXECUTION

Figure 2 shows the initial plan resulting from the prioritization process. Now imagine that during the
execution of the project feature “A” takes 40hrs, its worst case, instead of the 20 allocated to it in the
plan. This will push the development of features “G” and “L” to the right. This would leave us with 29hrs
to develop “G”, 9 more than the 20hrs estimated at 50%, so one can say there still is a fair chance the
customer will get it. If “G” takes 20 hours the budget remaining in the box will be 9 hours, one less than
the 10 estimated at 50%, so in this case the chance of the customer getting L would be slim. See Figure
3.

Time box

Startup activities Other support and management acti

Figure 2 Original plan. Time box = 180 hrs, Startup and other support and management activities 60 hrs, development budget 120 hrs

Time box

Startup activities Other support and management activities

Delay due to A L

Figure 3 Must have release is delayed because “A” takes longer than the scheduled budget

Eduardo Miranda®© 2011

DEALING WITH CHANGES AND DEFECTS

Changes are natural. When a change occurs it should be ranked against current priorities and if accepted
it will be at the expense of an already planned requirement or by changing the time box itself.

With respect to defects a sensible strategy is to fix all critical and major defects within the time allocated
at the subset in which they are discovered, postponing minor defects to the end of the project and
giving the customer the choice between fixing the problems and developing additional functionality.

BUSINESS IMPLICATIONS

It is obvious that acknowledging from the very start of the project that the customer might not receive
everything requested requires a very different communication, and perhaps marketing, strategy from
that of a project that promises to do it, even when nobody believes it will do it.

The premise, in which the method is based, is that businesses are better off when they know what could
realistically be expected than when they are promised the moon, but no assurances are given with
respect as to when they could get it.

To be workable for both parties, the developer and the sponsor, a contract must incorporate the notion
that an agreed partial delivery is an acceptable, although not preferred, outcome. A contract that
offloads all risk in one of the parties would either be prohibitive or unacceptable to the other. The
concept of agreed partial deliveries could adopt many forms. For example the contract could establish a
basic price for the “must have” set with increasingly higher premiums for the “should have” and “could
have” releases. Conversely the contract could propose a price for all deliverables and include penalties
or discounts if the lower priority releases are not delivered. The advantage for the project sponsor is
that, whatever happens, he can rest assured that he will get a working product with an agreed subset of
the total functionality by the end of the project on which he can base his own plans.

A similar idea could be applied to any reward for the people working in the project. No reward will be

associated with delivering the “must have” release since the team members are simply doing their jobs.
Subsequent releases will result in increased recognition of the extra effort put into the task. The relative
delivery likelihood associated with each release could be used to calculate the reward’s expected value.

SUMMARY

We have presented a simple prioritization procedure that can be applied to the ranking of requirements
at the release as well as the project level.

The procedure does not only captures customer preferences, but by constraining the number of
features in the “must have” set as a function of the uncertainty of the underlying estimates, is able to
offer project sponsors a high degree of reassurance in regards to the delivered of an agreed level of
software functionality by the end of the time box.

Eduardo Miranda®© 2011

This simplicity is not free. It comes at the expense of the claims we can make about the likelihood of
delivering a given functionality and a conservative buffer. Users seeking to make more definitive
statements than “short of a calamity” or optimize the buffer size should consider the use of a more
sophisticated approach such like the one described in Planning and Executing Time Bound Projects
(Miranda, 2002) which requires considerably more information and an understanding of the problems
associated with the elicitation of probabilities.

BIBLIOGRAPHY

Berander, P., & Andrews, A. (2005). Requirements prioritization. In C. W. A. Aurum, Engineering and
Managing Software Requirements. Berlin: Springer Verlag.

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and iterative approach.
Information and Software Technology, 46(4).

Kitchenham, B., & Linkman, S. (1997, May). Estimates, Uncertainty and Risk. /EEE Software.
Miranda, E. (2002, March). Planning and Executing Time Bound Projects. IEEE Computer.

Stapleton, J. (2003). DSDM Business Focused Development, 2nd ed. London: Addison Wesley.

Appendix F. Technology Readiness Levels

subsystem
validation in a
relevant end-to-
end environment.

software technology is demonstrated. This
level extends to laboratory prototype
implementations on full-scale realistic
problems in which the software technology is
partially integrated with existing
hardware/software systems.

TRL | Definition Description Supporting Information

1 Basic principles Lowest level of software technology Basic research activities, research articles, peer
observed and readiness. A new software domain is being reviewed white papers, point papers, early lab
reported. investigated by the basic research model of basic concept may be useful for

community. This level extends to the substantiating the TRL.
development of basic use, basic properties of

software architecture, mathematical

formulations, and general algorithms.

2 Technology Once basic principles are observed, practical Applied research activities, analytic studies,
concept and/or applications can be invented. Applications small code units, and papers comparing
application are speculative, and there may be no proof competing technologies.
formulated. or detailed analysis to support the

assumptions. Examples are limited to analytic
studies using synthetic data.

3 Analytical and Active R&D is initiated. The level at which Algorithms run on a surrogate processor in a
experimental scientific feasibility is demonstrated through laboratory environment, instrumented
critical function analytical and laboratory studies. This level components operating in a laboratory
and/or extends to the development of limited environment, laboratory results showing
characteristic functionality environments to validate critical | validation of critical properties.
proof of concept. properties and analytical predictions using

non- integrated software components and
partially representative data.

4 Module and/or Basic software components are integrated to | Advanced technology development, stand-
subsystem establish that they will work together. They alone prototype solving a synthetic full-scale
validation in a are relatively primitive with regard to problem, or standalone prototype processing
laboratory efficiency and robustness compared with the | fully representative data sets.
environment (i.e., | eventual system. Architecture development
software initiated to include interoperability,
prototype reliability, maintainability, extensibility,
development scalability, and security issues. Emulation
environment). with current/legacy elements as appropriate.

Prototypes developed to demonstrate
different aspects of eventual system.

5 Module and/or Level at which software technology is ready Software architecture diagram around
subsystem to start integration with existing systems. The | technology element with critical performance
validation in a prototype implementations conform to requirements defined. Processor selection
relevant target environment/interfaces. Experiments analysis, Simulation/Stimulation (Sim/Stim)
environment. with realistic problems. Simulated interfaces Laboratory buildup plan. Software placed

to existing systems. System software under configuration management.

architecture established. Algorithms run ona | Commercial-off-the- shelf/government-off-the-
processor(s) with characteristics expected in shelf (COTS/GOTS) components in the system
the operational environment. software architecture are identified.

6 Module and/or Level at which the engineering feasibility of a | Results from laboratory testing of a prototype

package that is near the desired configuration
in terms of performance, including physical,
logical, data, and security interfaces.
Comparisons between tested environment and
operational environment analytically
understood. Analysis and test measurements
quantifying contribution to system-wide
requirements such as throughput, scalability,
and reliability. Analysis of human-computer
(user environment) begun.

87

System prototype
demonstration in
an operational,
high-fidelity
environment.

Level at which the program feasibility of a
software technology is demonstrated. This
level extends to operational environment
prototype implementations, where critical
technical risk functionality is available for
demonstration and a test in which the
software technology is well integrated with
operational hardware/software systems.

Critical technological properties are measured
against requirements in an operational
environment.

Actual system
completed and
mission qualified
through test and
demonstration in
an operational
environment.

Level at which a software technology is fully
integrated with operational hardware and
software systems. Software development
documentation is complete. All functionality
tested in simulated and operational
scenarios.

Published documentation and product
technology refresh build schedule. Software
resource reserve measured and tracked.

Actual system
proven through
successful
mission-proven
operational
capabilities.

Level at which a software technology is
readily repeatable and reusable. The
software based on the technology is fully
integrated with operational
hardware/software systems. All software
documentation verified. Successful
operational experience. Sustaining software
engineering support in place. Actual system.

Production configuration management reports.
Technology integrated into a reuse "wizard."

