)
ngvia

Recommended Developments Necessary for Applying (W)Asp
Deconvolution Algorithms to ngVLA

G. Hsieh, S. Bhatnagar, R. Hiriart, M. Pokorny

March 2022

Abstract

This memo characterizes the computational load of deconvolution algorithms, focusing on the
new AspClean and Wide-band AspClean (WAsp), in order to estimate the number of computing
resources required by ngVLA and evaluate the use of GPUs for deconvolution. Our performance
profiling results show the hotspots and memory consumption of the deconvolution algorithms
and recommend ways to utilize GPU for speedup for ngVLA. Our preliminary implementation
of using the GPU-based FFT (cuFFT) in the hotspot function of AspClean shows a 2x runtime
improvement, which is a lower-limit on the speedup. This demonstrates that utilizing GPU for
the hotspot functions of deconvolution algorithms is a worthwhile line of work to pursue with
data transfer between CPU-GPU memories factored in. Our analysis also shows that (W)Asp has
improved memory performance which suggests an advanced memory system may not be required
for applying (W)Asp to ngVLA.

1 Introduction

The ngVLA is currently in the Conceptual Design stage with the purpose of, "down-select the imple-
mentation options as far as possible and to confirm the detailed scope of the project, including the
cost-driving and performance-driving requirements and key design features". The main goal of this
work is to help define the ngVLA data processing requirements, which can then be used as input to
define detailed requirements for the relevant systems (e.g. ngCASA in this case). Together with ar-
chitecture changes and implementation plans for the required capabilities, we can process and analyze
ngVLA datasets and images.

So far our work in the area has been concentrated in elaborating the scalability and computing
sizing requirements, specifically characterizing the computational load of gridding in order to estimate
the number of computing resources required by ngVLA (see [2]) and evaluate the use of GPUs for
gridding. The memo summarizes the work that characterizes the cost of another subject, deconvolu-
tion, as well as evaluates the use of GPU for deconvolution. The work focuses on the new (W)Asp
deconvolution algorithms because they have shown improved imaging performance than the widely

used MS-Clean and MS-MFS algorithm for datasets from EVLA and ALMA ([3]).

The outline of the memo is as follows. Section 2 describes the computational characterizations,
including imaging performance, hotspots and memory consumption, of the (W)Asp deconvolution

algorithms and their comparisons to MS-Clean/MS-MFS as a baseline reference. Section 3.1 sum-
marizes the findings from the performance characterization results, identifies hotspots of the (W)Asp
algorithms, and proposes ways to utilize GPU for runtime improvement. Section 4.2 describes our
proof-of-concept study that uses the GPU-based FFT, cuFFT, to speed up the hotspot function in
AspClean. It shows the line of work is worth pursuing in ngCASA with data transfer between CPU-
GPU memories factored in. Section 5 summarizes the development plans for applying the (W)Asp
deconvolutions to ngVLA.

2 Performance Profiling

The analysis tool used for this study is Intel® VTune™ Profiler ([1])). It can locate hotspots, the
most time-consuming parts of the code and visualize hot code paths and time spent in each function
and with its callees with Flame Graph. It can also identify the most significant hardware issues and
pinpoint memory-access-related issues such as cache misses and high-bandwidth problems. To analyze
the computing cost of narrow-band and wide-band deconvolution, we use a simulation of a jet and
lobe like structure to showcase a realistic situation, namely thin jets as well as a mix of compact and
extended structure. The dataset has 5 channels, going from 1 GHz to 2 GHz for the VLA D-config.
The following sections show the imaging performance and cost of computing (runtime and memory
consumption) of AspClean and WAsp on the “jet” dataset as well as the comparison with MS-Clean
and MS-MFS as a baseline reference.

2.1 Imaging Performance

For the narrow-band imaging, Figure 1 shows that the current MS-Clean solution (middle) cannot
get the spectral index correct for the long edges of the jet part, and the AspClean (right) has the
spectral index much closer to the truth. Figure 2 shows the residual images for the MS-Clean (left)
and AspClean (right). The Asp-Clean residual image is more noise-like than MS-Clean.

sim_jet_vla.alpha—raster msclean_jet_Sk_all_circle.alpha—raster aspelean_jet_4k_urvashi3_circle.alphu—rast

20"03™ 1™ 19"59™ 577 20703™ 1™ 13 ' 20M03™ 01™ 19"59™ 57T
J2000 Right Ascension J2000 Right sio J2000 Right Ascension

Figure 1: Spectral index comparison between the truth (left), MS-Clean (middle), and AspClean (right) on
the jet dataset.

Imask.residual—raster 4k_urvashid_circle_Bw.residual

< e
< <
= =
S} S}
= =
o o
@ <
o st
[[
O [
o [
I ol
))

20"03™ oo™ 19hs7m 20"03™ oo™ q9hs7m
J2000 Right Ascension J2000 Right Ascension

Figure 2: Residual image comparison between the MS-Clean (left) and AspClean (right) on the jet dataset.

Similarly, for the wide-band imaging Figure 3 shows that the current MS-MFS solution (middle)
cannot get the spectral index correct for the long edges of the jet part, and the WAsp (right) has
the spectral index much closer to the truth. Figure 4 shows the first, second and third-order Taylor
coefficient residual images for the MS-MF'S (top) and WAsp (bottom). The WAsp residual images are
more noise-like than MS-MFS.

sim_jet_vla.alpha—raster

200 oo™ 1 o 20" 0
20"01™ 00™) 20"01™ oo™

J2000 Right J2000 Right

Figure 3: Spectral index comparison between the truth (left), MS-MFS (middle), and WAsp (right) on the
jet dataset.

mtmfsclean_jet_Sk.residual.tt:

Rinht Ascensinn
t2—raster

al. tt0—raster

Figure 4: Residual image comparison between the MS-MFS (top) and WAsp (bottom) on the jet dataset.

2.2 Hotspots
2.2.1 AspClean

Figure 5 shows the screen shot of the performance profiling result of AspClean from the Profiler. It
summarizes the overall performance of AspClean, including the runtime, hotspots, memory consump-
tion, etc. Clicking the Hotspots icon in the window further gives detailed hotspots analysis (Fig-
ure 6) . The hotspots analysis in Figure 6 shows that the most time-consuming function of AspClean
is casacore::objcopy. The casacore::objcopy is called by casacore: :FFTServer: :flip in the
BFGS optimization function, objfunc_alglib, which is called by the getActiveSetAspen function
that selects an initial Asp component and optimizes it ([3]).

Project Navi... + [J & | welcome 1000ps >

~ B AspCleanz021 Performance Snapshot @ 1 INTEL VTUNE PROFILEF
r000ps Analysis Configuration CollectionLog = Summary #
» I sample (matrix)
Choose your next analysis type Elapsed Time : 201.121s
Select a highlighted recommendation based on your performance snapshot. IPC 02 1.835
SP GFLOPS 1.970

CTURE DP GFLOPS ; 0.062
x87 GFLOPS 0.001
Average CPU Frequency ©: 3.7 GHz

Hotspols Anomaly Microarchitecture
Detection Exploration
(preview) 21.7%
Logical Core Utilization :
- o
. . 18.6% (0.743 out of 4)
Memory Memory Access
Consumption 26.1%

) Microarchitecture Usage :
21.7% R of Pipeline Slots

Threading HPC Input and Output -
18.6% Performance Memory Bound : 26.1% &
Characterization R R
68.9% of Pipeline Slots

ACCELERA PLATFORM ANALYSES Vectorization : 68.9% R
£ of Packed FP Operations
GPU Offload GPU System GPU Rendering Instruction Mix:
Compute/Media Overview (preview) SP FLOPs (7t 25.3% of uOps
Hotspots ;
(preview) Packed ZE.&"A.! from SP FF
128-bit : 75.6% from SP FF

Figure 5: Performance snapshot of AspClean

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application

performance.
CPU % of CPU
Function Module Time Time

casa6core:-objcopy<fioat> g‘;‘fjj“’"'s cpythan-36m-x86_8d4-finux- 46.694s 23.8%
casa6core::Array<std::complex<float>, std::allocator<std::complex<float>> libcasatools.cpython-36m-x86_64-linux- 8.607s 4.4%
>ArTay gnu.so .
casabBeore:FFTServer<float, std-:complex<float>>::fft0 Igli:]fjassgtoo|s‘Cpylhun-36m-x86764-|mux- 7.489s 3.8%
casa::AspMatrixCleaner::aspclean Iglﬁ(f]aé‘.gtooIs‘cpy(hon-36m-x86764-lmux- 6.947s 3.5%

memmove_ssse3_back libc.so.6 6.3665 3.2%

*N/A is applied to non-summabie metrics.

Figure 6: Top hotspots of AspClean

Figure 7 shows the detailed breakdown of the AspClean hotspots. It shows 68% of AspClean run-
time is spent on the aspclean function. 83% of the aspclean runtime is spent on getActiveSetAspen
and 7% of the aspclean runtime is spent on both casacore: :FFTServer: :£ft0 and
casacore: :FFTServer: : f1ip that are outside of the getActiveSetAspen function. The getActiveSetAspen

function is the main function of AspClean that dynamically determines optimal scales at every minor
iteration using the BFGS optimization, so not surprisingly it takes the majority of the runtime. 80% of

the getActiveSetAspen runtime is spent on the BEGS optimization (i.e. alglib: :minlbfgsoptimize)

and 10% of getActiveSetAspen is on both casacore: :FFTServer: :££t0 and casacore: :FFTServer: : f1ip.
Almost all of the alglib: :minlbfgsoptimize runtime is spent on casa::objfunc_alglib. Further-
more, 83% of the casa::objfunc_alglib runtime is spent on casa: :FFTServer::f1lip (about 40%)

and on casa: :FFTServer: :££t0 (about 22% each).

casa::SynthesisDeconvolver- execuieCube| 70.4% libcasatools. cpython-36m-x86_6d-linux-gnu.so

_wrap_symhesisdeconvolver_executeming 70.4% _synthesisdeconvolver.cpython-36m-x86_64-Jinw

casac synthesisdeconvolver-executeming 04% “synihesisdeconvoiver cpython-36m-xB6_64-inw

casa::SynthesisDeconvolver- execuieMinol 70.4% libcasatools. cpython-36m-x86_Bd-linux-gnu.so

executeminorcycle 704% synthesisdeconvolverpy

casa-CubeMinorCycleAlgorithm:task 0.4% ibcasatoals,cpython-36m-x86_64-Inux-gnu.so

casa::SynthesisDeconvolver:executeCore| 70.3% libcasatools. cpython-36m-x86_64-linux-gnu.so

casa SDARorithmBase:deconvolve 703% ibcasatools,cpython-36m-x85_64-nux-gnu.so e -

casa::SDAIgorithmAAspClean:takeOneSte 68.2% libcasatools.cpythy 86_64-inux-gnu.so Cakess CPUTme:ToRlT 2 IGEU Tine

casa::AspMalrixCleaner:aspclean 68.2% 6.947s libcasatools.cpython-36m-xB6_64-lnLx-gnu.so e e U e) L

casa::AspMatrixCleaner: getActiveSetAspe 57.9% 05 libe: I h _64-l gnu.so B0ZW

algib:minibfgsoptimize 46.4% libcasataols.cpython-36m-x86_64-linux-gnu.so casaficore: FETServe/<ioal, ski-complex<iicat:> o

casa:objfunc_alglib 26.4% 0.189s | libcasatoals. cpythr i 6d-linux-gnu.so 3.8%
e o o casabcore: FFTServer<fioal, std:complex<fioal>>:| 35%

o lead o Beteoidsod casateore:FFTServerafiaal, std-complex<fioat>>| 19%

func@0x2080 278% b3t threads s0.3 L2

casaGcore: FFTServer<fioal, sid:complexs 241% 0.2925 ibcasatools.cpython-36m-x86_64-linu-gnu.s0 CameBOrGEAT <t complex <fioit, S l0CEN 1%

T e 06 CioE o oS00, RIS casateore::Amay<foat, sid: allocator<float>>:assig 059

casabcore::FFTServer<float, stdcomplex< 13.9% 7.4895 libcasatools.cpyth _64-linux-gnu.so : g 05%

—_— — e casabeore: Matrix<float, sid-allocatorsfloat>:Matr 04

Figure 7: Top-down performance analysis of the AspClean hotspots

eXecuteC i le 70.3%
casa: SDAIgorithmBase: deconvolve 70.3%
casaSDAlgorithmAAspClean-akeOnestep 68.2%
casa;:AspMaixCleaner:aspclean 06.2%
casaAspMatrixCleaner::gethctiveSetaspen 57.9%
alglb-mirlbigsoptimize 46.4%
casaobjfunc_alglib 46.4%
__clone 28.8%
stan_thread 26.7%
func@0x2080 27.8%
casabcore:FFTServer<foat, sid:complex<fioats>:fip 24.1%
casascore-objcopy<float> 23.9%
casa6eore::FFTServercfloat, std::complex<fioat>>::#0 13.9% Calesa! CEL T Tokl =] IRCEt) [TNes: 3l
Are@OCBAn 150 | ¥ casasobjfunc_aiglb 100.0% 0.18%
Srefiooda LT casatcore: FFTServer<ioal, std-complex<fioat>>:fip 39.6% 02135
s s o o casacore: FETSenver<loal, sid:complex<fioat>>: 40 2.9% 55115
Aoz o casabcore-FFTSenverfoal, std-complex<fioat>>: 1 21.9%
func@0xE2300 11.8% . - 2L
AneQOEID Som casabcorerAmay<) assign_confo 4.8%
func@0x25980 7.7% float, operator 8%

Figure 8: Top-down performance analysis of the casacore: :objcopy function

Based on these results, the total runtime spent on casacore: :FFTServer: :fft0
and casacore: :FFTServer: :flip is calculated as

0.83 % 0.8 % 0.83 + 0.83 % 0.1 + 0.07 = 0.703
The total runtime spent on matrix operations is,
0.140.83%0.14+0.83%0.8%0.17 = 0.297

In summary, about 70% of the aspclean runtime is spent on both casacore::FFTServer::fft0
and casacore: :FFTServer: :f1ip and about 30% of aspclean is spent on matrix operations that
are not localized in one function. For the BFGS optimization, matrix calculation (17%) is considered
cheap compared to FFT (83%).

It is worth noting that casacore: :objcopy is the most time-consuming function in AspClean, but
not WAsp even though both algorithms call the same BFGS optimization function. This is possibly
because AspClean has extra casacore: :FFTServer::fft0 and casacore: :FFTServer: :flip every
minor iteration for PSF x optimal _scale to update the residual. The casacore: :FFTServer::flip
calls casacore: :objcopy. Flipping is required because the FFTServer member functions all assume
that the origin of the transform is at the center of the array, i.e. at [nx/2,ny/2,...], where the indexing
begins at zero. Because the fftpack software assumes the origin of the transform is at the first element,

ie. [0,0,...], the FFTServer class flips the data in the array around to compensate.

2.2.2 MS-Clean

The hotspots analysis in the Figure 9 and Figure 10 show that the majority of the MS-Clean runtime
is spent on the thread cloning and the findMaxAbsMask functions in MatrixCleaner::clean. The
findMaxAbsMask function finds the peak value from an image matrix with mask applied. Unlike
AspClean, casacore: :FFTServer functions are not hotspots in MS-Clean mostly because it does not
require the BFGS optimization for dynamically optimizing scales.

Hotspots Insights
(© Elapsed Time : 60.290s 1f you see signiicant hotspots in the Top Hotspots list, swich to the Botom-
© cPuTime: 127308 up view far in-depth analysis per function. Otherwise, use the Calisr/Callee
) of the Flame Graph view 1o wack critical paths for these hotspats.

Total Thread Count: 20
Paused Time = 0Os Explore Additienal Insights
Paralielism © : 52.7% &
Use < Threading to explore mone opportundies to increase paralieism
) Top Hotspots & o sgplcadion.
This section ists the most aclive functions in your appbcation. Oplimizing these holspat functions typically reSults in improving Microarchitecture Usage © : 25.6% K

overall application performance Use | 0 exph jently your
= application funs on the used hardware,
nction cru % of CPU
Ful Module Time Time Vectorization) : 3.0% &
Use & HPC Performance Characterization 1o karm more on
casa:MatixCleaner:ciean_omp_in 2 "'“.a:;'““'s KDy hon-38m-x6_64-kimz- 310355 24.8% vectorization efficiency of your application. A significant raction of
g fioating point arithmenc inssructions are scalar. Use [ntel Advisor 1o see

tunc@0x18add libgomg.50.1 20.631s 16.5% possible reasons why the code was not vectorzed.
casa:MauixCleaner:clean._omg_fn.1 ::f:;’m's cpythom- 36im-x06_6a-imnc- 192525 15.1%
casaboore: , sid:allocatorell _64-linux-
poeriey ey 142035 1.2%
casabrore:Array<fioat, st AITA ythi BB _Ba-linux-

- 109565 B.6%
¥ guso

NI appied 10 non sumumatie merrcs

Figure 9: Top hotspots of MS-Clean

Bottom-up

Grouping: | Function / Call Stack
CPU Time ¥ [*
= func@0x162b0 - start thread — _ clone 20.188s
~ GOMP_parallel — casa::MatrixCleaner::clean ~ casa::SDAlgorithmMSClean::takeOneStep - 10.847s
v func@0x18ad0 20.931s
& func@0x162b0 ~ start_thread — __ clone 20.931s
v casa:MatrixCleaner::clean._omp_fn.1 19.252s
b = func@0x162b0 ~ start_thread — _ clone 12.537s
b = GOMP_parallel — casa::MatrixCleaner::.clean — casa::SDAlgorithmMSClean::takeOneStep - 6.7155
v casafcore::minMaxMasked<float, std::allocator<float>> 14.203s
» = casa:MafrixCleaner:findMaxAbsMask — casa:MatrixCleaner::clean._omp_fn.1 14.203s
v casa6core::Array<float, std::allocator<float>>::Array 10.956s
v casa:MatrixCleaner::clean._omp_fn.1 5.464s
b = func@0x162b0 ~ start_thread — __ clone 4.152s
~ GOMP_parallel — casa::MatrixCleaner::clean — casa::SDAlgorithmMSClean::takeOneStep 1.312s
I casa:MatrixCleaner::clean._omp_fn.2 4.522s
» = casa:MafrixCleaner:clean — casa::SDAlgorithmMSClean::takeOneStep — casa::SDAlgorithi 0.819s
» casafcore::Array<float, std::allocator<float>>:resize I] 0.050s
» = casatcore: Array<float, std::allocator<float>>::copy — casabcore::Array<float, std::allocator<fl 0.030s
» = casatcore:LELArray<float>:LELArmay — casa6core::LatticeExpr<float>:doGetSlice — casaf(0.030s
» = casa:SDAlgorithmMSClean::takeOneStep — casa::SDAlgorithmBase::deconvolve — casa::Sy 0.010s

Figure 10: Top-down performance analysis of the MS-Clean hotspots

2.2.3 WAsp

The hotspots analysis in Figure 11 shows that WAsp does not have the time-consuming casacore: : objcopy
function. More time is spent on matrix operations (12%) than ££t0 (9%) which implies WAsp may
benefit from performance improvement by moving matrix operations to GPU.

Furthermore, the detailed analysis (Figure 12 and Figure 13) show that 63% of WAsp runtime is
spent on the mtaspclean function. 62% of the mtaspclean runtime is spent on computeHessianPeak.
41% of computeHessianPeak is on casacore: :FFTServer: :££ft0 and the rest 59% is on matrix oper-
ations. This is because computeHessianPeak does the following matrix operations:

e Calculate the convolutions of PSF and the optimal scale (O(ntaylor? 4) of ££t0 and matrix
operation)

e Compute Hessian and inverse of Hessian
Also, compared with MS-MFS, computeHessianPeak in WAsp has

e an additional findMaxAbs function because of the nature of the Asp algorithm

e additional matA_p[scale] .resize(tgip, false); invMatA_pl[scale] .resize(tgip, false);
for filling up the two matrices.

In WAsp, the getActiveSetAspen function has O(numberof InitialScales?)

casacore: :FFTServer: :flip and fft0 and operations to find peak from residual image convolved

with all initial scales. The analysis shows that 17% of mtaspclean is spent on getActiveSetAspen.

25% of getActiveSetAspen is on minlbfgsoptimize (80% of minlbfgsoptimize is also on FFTServer: :flip
and ££t0), 41% of getActiveSetAspen is on casacore: :FFTServer::flip and ££t0, and the rest is

on matrix operation. That is, for WAsp totally 73% of the getActiveSetAspen runtime is spent on
casacore: :FFTServer: :flip and casacore: :FFTServer: :££t0, and the rest is spent on matrix op-
erations. Besides, 8% of mtaspclean is spent on updateModelAndRHS (mostly matrix operations), 3.3%

of mtaspclean is on casacore: :FFTServer::££t0, and 2.9% of mtaspclean is on solveMatrixEqn
(mostly matrix operations). Thus, for WAsp the overall runtime of FFT is calculated as,

0.17%0.73 + 0.62 * 0.41 = 0.3783

, and the overall runtime of matrix operations is calculated as,

0.17 % 0.27 4+ 0.62 % 0.59 = 0.4117

That is, 38% of WAsp is on casacore: :FFTServer::££t0 and flip, and 41% of WAsp is on ma-

trix operations that are more localized in computeHessianPeak. GPU may be used to speed up the
matrix operations in computeHessianPeak in this case.

Top Hotspots
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application

performance.
CPU % of CPU

Function Module Time Time
std::transform<std::complex<float> const*, std::complex<float> const*, std::complex<float>*, st libsynthesis.s0.3877.90.1 9.603s 12.0%
d::multiplies<std::complex<float>>> 08
casacore::FFTServer<float, std::complex<float>>::fft0 g%c?osg_smmalh 50.3877. 7.259s 9.1%
casacore::arrays_internal::Storage<std::complex<float>, std::allocator<std::complex<float>>>:: o
construct libatnf.s0.3877.90.108 4.724s 5.9%
func@ox18ado libgomp.so.1 3.860s 4.8%
__memmove_ssse3_back libc.s0.6 2.794s 3.5%

Figure 11: Top hotspots of WAsp

Hotspots @ INTELVTUN
Analysis Configuration _ Collection Log Summary Botom-up | Caller/Callee | Top-downTree Flame Graph _ Plaiorm
Functon CPUTIme: Total ¥ = | CPUTime: Seif Callers 5
__libe_start_main 67.0% ¥ casa;MTAspMatixCleaner: computeHessianPeak I 100.0%
stant_ipython 67.0% b casazMTASpMatfixCleaner. miaspciean 29.9%
initalize 67.0% 0.1
PyEval_EvalCode 67.0%
PyEval_EvalCodeEx 67.0% o
Pyobject_cal 67.0%
func@0xdbo1o 67.0%
init_code 67.0%
_run_cmd_line_code 67.0%
Tun_cell 67.00
1un_ast_nodes 67.00
nun_code 67.0%
initialize 67.0%
launch instance 67.0%
catch_config_eror 67.00
<module> 67.0%
_start 67.0%
<module> 67.0%
<module> 67.0%
<module> 66.9% |
funhinorcycle s | Callees [cpuTme: Totwr v = [¢
funMinorCyeleCore 64.4% - -
executeminorcyde Ba.6% ~ casa:MTAspMatrixCleaner: computeHessianPeak 100.0%
£3.6% casacore: FFTServer<float, std..complex<float>>::fi0 | 41.1%
oreMinorCycle 63.6% B I 280
casa:SDAlgorithmBase: deconvolve 63.6% - I £ L]
_wap_synihesisecomvalver_execuleminorcycle e36% Yy i L]
- s casacore: Matrx<Tloat, st allocator<ioa>:operator= 13
casa SDAIGOIthmMTASpClean: TakeOnestep 62.4% i N Dy et [F5]
casa:MTAspMalrixCleaner:mtaspclean 62.4% 1.0 CRSACOS: DRATM0I S CUDI®: I o
o 30.3% h std:iostream: :operator<< I 0.1

casa:MatrixCleaner: findMaxAbs I 0.1

Figure 12: Top-down performance analysis of the WAsp hotspots

Hotspots @ w2

Analysis Configuration Collection Log Summary | Borom-up | CalleriCallee

Top-down Tree Flame Graph Plarform

Grouping:| Function / Call Stack

v [%][2][%]| cait stacks
|

INTEL VTUNE PROFIL
M

L.}

Function / Call Stack [cPuTme v =] Modue [“ 55.29 (5.305s of 9.603s)
v constr, | 85,6035 77.90.108 W tibsynthesis.50.3877.90.108 | sid:transformestd: complex<fioat> const’, stc::com
> casacore: FFTServer<float, std-complex<fioar=>: 0 7.2595 Hbcasa_scimaih 50.3877.90.108 | casacore: FFTSU | Iipsynihesis. 50.3877.90.108 | casacore: amayContTransform<std:complex<fioat>
B i ge<std :comp! 4.7245 Kibain.0.3877.90.108 casacoreranays | uoecic oo 3577 00,108 ~
. T':?:;Lti;sﬁ_m 23806 owpsod i”:fm“r‘niut’i"ﬁ Hbsyrthesis.0.3677.90.108 | casacore: operalor*<sid: complexcfioat>, sid;aloc
b func@0x6110 | 2.748¢ ibfiwatso3 func@oxgafio | libsynthesis.s0.3877.90.108
v assgn_oonl 2,730 batn.50.3877.50.108 casacore: Arraye | Ibsynihesis.50.3877.90.106 | casa: MTAspMatixCleaner:mtaspcleans xdf7 - M...
» casacore:FFTServer<fioa, sid::complex<fioat=>:fip 1 2.684s libcasa_scimalh,s0.3677.90.108 | casacoresFFTSt | libsynthesis s0.3877.90.108 | casa: SDAKorthmMTAspClean: takeOneStepsixL.
» func@0x146288 2.3205 lbffwal.s0.3 func@0x146288 | libsynthesis.s0.3877.90. 108 | casa:SDAKorithmBase:deconvolve +Dxboc - SDA!
» func@0x1239ce 22985 Bbfwatso3 fune@0x1239¢e | jipsyntf 877.90.108 RECorEMinrCY.
» func@0xa3bo 2.009s libffwal_threads.s0.3 func@oxazbo o 877.90.108 yeles0..
' 2318 By se71.90.308 libtools.s0.3877.90.108 | casac:synthesisdeconvolver. executeminoreycle +0x2f
» func@0x13e450 17505 Ebfftw3t.s0.3 fune@0x13460
» func@oxisban 1.692¢ libfiw3tso3 B Wrap_
» func@0x13ed?3 16765 kbffw3ts03 func@0x13ed73 " py:24:
» casacorezmyntransform<float const*, fioat, floats, sid:multiplies<fioat>> 1.606s. kbdisplay.s0.3877.90.108 casacore::myrire | libpython2.7.50.1.0 | PyEval_EvalCodeEx+0x85h
» func@oxfs1rs 14605 kbffwat.s0.3 func@oxte176 | imager_base.py | unMinerCycleCore +0xL76 - imager_base.py:547

» casacoresanayCont

» func@0x146feB

. sid:

» do_futex_waiteonstprop.1
> casa MTAspMatrixCleaner: miaspciean
» casacore:minMax<float, std:allocator<float>>

3877.90.108

w | 13405
1.330s Ebpthread.s0.0
10305 bsynihesis.50.3877.90.108
0.9815 bbdisplay s0.3877.90.108
0.968s Wbiiwatso3

do_futex_wait.cc
casa:MTASpMal
casacore: minki
func@0x146te8.

teleanscript_MTAsp_jet_fixedname.py | <module>+0x122 - twleanscript_MTAsp.j

libpython2.7.50.1.0 | PyEval_EvalCodeEx+0x85h
imager_base.py | FUMInorCycie0xS - Imager_base py:511
libpython2.7.50.1.0 | PyEval_EvalCodeEx+0xB5h

2.2.4 MS-MFS

Figure 13: Bottom-up performance analysis of the

mtaspclean function

Hotspots analysis in the Figures 14 and 15 show that 92% of the MS-MFS runtime is spent on
mtclean. 37% of mtclean is spent on updateModelAndRHS, 33% is on solveMatrixEqn, and 28%
is on chooseComponent. The computeHessianPeak or casacore: :FFTServer: :££t0 are not hotspots
in MS-MFS like WAsp. This is probably because compared with MS-MFS, WAsp has

e an additional findMaxAbs function in computeHessianPeak because of the nature of the asp

algorithm.

e additional matrix resize functions in computeHessianPeak for filling up the two matrices.

e getActiveSetAspen to dynamically optimize scales at every iteration which is mostly
casacore: :FFTServer: :££t0 and flip.

On the other hand, WAsp only spent 8% of the runtime on updateModelAndRHS and 3% on solveMatrixEqn

because it only involves two scales (0-scale and the optimal scale), instead of five scales in MS-MFS.

©

Top Hotspots &

This section lists the most active functions in your application. Optimizing these
hotspot functions typically results in improving overall application performance.

% of
Function Module %':n"é CPU
Time
casa6core:.arrayContTransform<floa .
t, std::allocator<float>, float, std::alloc ggcmtfgsﬁcgﬂh 25.440s 17.1%
ator<float=, float, std::allocator<float RAN-aMLED : :
>, std::plus<float>> gnu.
P : - libcasatools.cpyth
Z%s.'_?éMUmTermMamxcleaner..updat On-36mM-X86_64- 253675 17.0%
linux-gnu.so
i s libcasatools.cpyth
casaboore:Amay<float, std:allocalor o 36mxgs_64- 159605 10.7%
=Ty linux-gnu.so
casabcore:.arrayContTransform=floa .
t, std::allocator<float>, float, float, st gﬂcmmfésﬁcgrh $5608s S5
d::allocator<floar=, std::multiplies<flo i — : '
s inux-gnu.so
bl ; . libcasatools.cpyth
ﬁﬂaastﬁ;{héiurerermMamxcleaner..salve on-36m-x86_64- 12.530s 8.4%
q linux-gnu.so
[Others] N/A* 56.721s 38.1%

*N/A is applied to non-summable metrics,

Figure 14: Top hotspots of MS-MFS

CaleriCallee
Function CPU Time: Total ¥ (/| CPU Time: Soil) Callers. CPUTIme: Totad v % | CPUT
tclean 1 95.0% + casa-MultiTermMatrxCleaner: miciean 100.0%
<madule> 9509 » casa-SDalgerithmMSMFS takeOneStep 100.0%
call 95.0%
Py_Main 95.09%
func@0x121abd 95,004
__libc_start_main 95.0%
man 95.0%
_start 9500
nmMinarCycle 94.5%
PycFunction_Call 94.29%
92.3%
_wap_synihesisdeconvolver_execieminorcycle 92.3%
i i le 92.3%
eXeculgminercycie 92.3%
nmMinorCycleCore: 92.3%
executeminorcycle 92.3%
i i oreMinorCyche 92.3%
casa:SDAlgorithmBase: decorvolve: 92.3%
casa:SDAIGorithmMMSMES: LakeOneStep 91.9% _
casa;MultiTermMatrixCleaner:miclean 91.9% Calloos: CPUThne: Total v =
casa 383% 331 | v casa:MuliTermMatrxCleaner- miciean | 100.0%
30.9% 28| v | 36.2%
casa:MultifermMatriCleaner: updateRHS 20.5% 2531 » casaMultiTermMatriCleaner-updateRHS | 32.1%
= 25.3% 114! » CasaBon: . st multiplies, 16%
casabeore- anayTranstormResult<ioal, sid: pussfioat, std: allocator<fioats> sra. 235 consipr, 20.6% » casateare::Anay<foat, suf:aliocaior<fioat>>: Baselte| 0.0%
g r<float>, float, . float, std 17.6% 254 » casaboone: Auray<loal, sk aBocator<ioal>>: - Aty 0.0%
casaGeoresanay 3 ¥ isa2a7 | 13.5% » casabeare: Anay<foat, sn&:.lluummﬂm:x:mnei 0.0%
casabeores Array<fioat, S1d-allocator <float>>-Asray. I 109% 1591 » [impart thunk casaGeore:Amay<fioat, sud::allocaror<fig 0.0%
casabeore: . foat, floal, std: sl ea% 128 | » i L | EEE)
casa;ManixCleaner indMaxabsMask BO0% » casaMultiTermMatricCleaner: chooseComponen | 27.6%
casaGcoresmi , <flpal> £0% ne | » 20%
ay<fioal, sid:; assign_ £.5% 82| » 0.4%
__clone 509 » casa. leaner. 0.2%
stann_thread 5.0% > 0.0%
func@0x162b0 4.6% b CASABCOME: Operator<< 0.0%

Figure 15: Top-down performance analysis of the MS-MFS hotspots

2.3 Memory Consumption
2.3.1 AspClean
The memory consumption analysis of AspClean in Figures 16 and 17 below shows that the mem-

ory consumption is mainly in the getActiveSetAspen function for matrix allocation, resize, and
casacore: :FFTServer: :fft0 and flip. The total memory consumption is about 109 GB and the

peak memory consumption is about 180 MB.

Allocation Size: 108.9 GB
Deallocation Size: 108.9 GB
Allocations: 1,560,130
Total Thread Count: 18
Paused Time Os

Top Memory-Consuming Functions
This section lists the most memory-consuming functions in your application.

. Memory Allocation/Deallocation ;
Function A All ion
b Consumption Delta branans
casa6core::Array<std::complex<float>, std::allocator<std::complex
' 82.1GB -3.2MB 78,152
<float>>>::Anay '
casa6core:;:Amay<float, std::allocator<float>>::Array 15.5GB 00B 31,516
casatbcore::Aray<float, std::allocator<float>>::Array 71GB 00B 6,782
casabcore::FFTServer<float, std::complex<float>>:resize 3.2GB 00B 2,271
casabcore::Amay<std::complex<double>, std::allocator<std::compl
o P P 1311 MB 008 4
ex<double>>>: Array
*N/A is applied to non-summable metrics.
Figure 16: Total and top memory consumption of AspClean
~ M AspClean2021 Memory Consumption @ @
005ps Analysis Configuration ~ Collection Log ~ Summary ~ Botiom-up il
BEDAEREE Grouping:| (custom) Function / Function Stack v|[%][=
107k Funciion Function Stack Alocation/Deabocation Deta_| Allocation Stze ¥ | Del |
casabeore; Array<sid. <float>, sid::; Aray -3.2MB 82.1GB
casaboore: Anray<sid: ,sid Aay 82168 82168
:assign_conforming_i 29.7GB 29.7GB
~ -_alglib - 209 GB 2096GB
& casa; ~ casa:SD 202G8B 20.2GB
* casa: - casa. - 727.4 MB 727.4 MB
casa:AspMatixCleaner:getActiveSetAspen 44GB 44GB
= casauhs aspclean - casa:SD/ lean::takeOneStep — casa::SD/ deconvolve — ci 43GB 43GB
& casaASpMali -~ Casa’sD - casa sD Bl 17.9 MB 17.9MB
= casa: ., (boOf)0>::set ~ casa:vi:V| 881.3 KB BBL3 KB
fsn) 279GB 279GB
d Lresize 245G8B 245GB
 casabcore:LELAmmay<std: complex<float>>:LELAmay ~ casabcore: LaticeExpresid::complex<fioat>>:doGetSlice — casabcore: 41.9 MB 41.9MB
- , std:zminu: , Std:: itz 8813KB 881.3 KB
casabeore:Vector<std: , std-allocator<std: ¢ <float>>>:Veetor A1 KB 41 KB
casabeore: Array<fioat, std:-allocator<fioats>: Ay 0B 155GB
155GB 15.5GB
3 B86GB 86GB
 casa::AspMatrixCl :maxDirtyt ~ casa: 4.4GB 44GB
~ Ca5aY ASPCIean - Casa’ pClean: ~ casaSD ‘deconvolve — 4.4 GB 4.4GB
™ casa: i - casa: convolve — casa:’ £ 65 MB 65 MB
casabcore: Matrix<float, std: allocator<float>>-resize 38GB 38GB
5 405 100 120 140: 160: 180:
p: + S S ST ST ST AT ST S i S |
s 1805 MB |
2| python3s
E

Figure 17: Bottom-up and peak memory consumption of AspClean

2.3.2 MS-Clean
Figure 18 show that the total memory consumption of MS-Clean is about 72 GB and the peak memory

consumption is about 346MB. AspClean memory consumption is 1.5x more than MS-Clean (109GB
vs. T2GB). This is probably because of the getActiveSetAspen function in AspClean which consists

10

of additional matrix allocation, resize, and casacore: :FFTServer::fft0 and flip. The memory
consumption of MS-Clean is mostly on MatrixCleaner: :clean().

Allocation Size: 717 GB
Deallocation Size: 71.7GB
Allocations: 1,567,227
Total Thread Count: 21
Paused Time 7 0s

) Top Memory-Consuming Functions &
This section lists the most memory-consuming functions in your application.

Function Memory Consumption Allocation/Deallocation Delta Allocations
casatcore::Array<float, std::allocator<float>>::Array 68.5GB 0.0B 93,207
“Array<std::complex<float>, std::allocator<sid::complex<float>>>::Array 11GB 0.0B 1,195
casabeore::Array<float, std::allocator<float>>::Array 445.9 MB 0.0B 6,985
FFT! , std::compl resize 440.8 MB 0.0B 315
casaboore;:Array<std::ci , std:-allocator<std It double>>>::Array 163.8 MB. 0.0B 5
: - N 0s 205 40 &0s 80 100: 1205 140s. 1605 180 200: 2208
L D+ B P \\ll‘lu:n-uu'snnl\\\l\‘ll\uululsuuuH\\||s|||\\\lnlnulnu\||\||\\H\|u||||-t\|\=|||\H\\||s:|14|||||-||\\l\\|||||u|||||n|\||\\||\||H:
z
'§ python3.6 il
E o
Figure 18: Memory consumption analysis of MS-Clean
2.3.3 WAsp

Figures 19 and 20 show that the total memory consumption of WAsp is about 53 GB and the peak mem-
ory consumption is about 127MB. WAsp memory usage is 52% of AspClean (53GB vs. 109GB). More
investigations are required to understand why AspClean uses about 20GB for the optimization func-
tion, objfunc_alglib, but WAsp only uses about 1 GB since both call the identical objfunc_alglib
function. Most of the memory consumption of WAsp (about 38GB) is on computeHessianPeak.

Allocation Size: 53.1GB
Deallocation Size: 53.1GB
Allocations: 2,161,923
Total Thread Count: 13
Paused Time ; 0s

Top Memory-Consuming Functions
This section lists the most memory-consuming functions in your application.

Function Memory Consumption Allocation/Deallocation Delta Allocations
__gnu_cxx::new_allocator<std::complex<float>>::allocate 43.8 GB 0.0B 42,151
casacoreArray<float, std::allocator<float=>::Array 6.8 GB 0.0B 93,683
casacore::Array<float, std::allocator<float>>::Array 11GB 008 1,068
casacore:FilebuflO::setBuffer 209.5 MB 00B 3,529
__gnu_cxx::new_allocator<std::complex<double>>::allocate 157.3 MB 008 24

*N/A is applied to non-summable metrics.

Figure 19: Total and top memory consumption of WAsp

11

Project Navigator + 0 & | Welcome | [[f0GAmCIR
~ M AspClean2021 Memory Consumption @
1005ps ‘Analysis Configuration Collection Log Summary. | Bottom-up P |
1006hs-bad Grouping:| (custom) Function / Function Stack ~|[%]
o Function { Functen Stack || ASocatonDeallocaion Delia | Alocaton Size ¥ |
R + __gnu_cocmew_allocator<sid: complex<float>-allocate. 0B 43868
» B MSClean ~ __gnu_cxoc-new_aliocator<sid-complex<fioat>>--allocate - casacore:arrays_i ; q 438GB 438GB
- MTMFS v float>, : | 37.6G8 37.6G8
000ps [3 - casa:MTASpMatrixCl uteHessi 18268 18268
1001hs « casacore::ope std ~ casa:MT/ 18268 18268
002me = casa M i - Casa: - casaSDy ve 18.2GB 182GB
» I sample (mairix) b Sicas MTApMANLC : s SOAKK L = LT Jasns
e ! ~ . st :compl - casa:MTASpMatrixCl p 1168 1168
- I Waspzo21 » = casa:MTAspMatrixCleaner:miaspclean - casa lean: + casa:SD deconvolve 11G8 1168
r000ps b = casa: TASpClean: I -~ casa ‘deconvolve - casa exe 20mB 20Mm8
1001hs-bad »n X - casa:;MTASpMalixCl - casa 44.2M8 aazmB
002ps asacore::Array . std: o 3968 3968
1003hs « casacore: Anay<st: st copy -~ casacore::Armay<sid: . std: allocator L1768 1768
P casacore arrayT . st mult ., std 575.8 MB 575.8 MB
* casacore!LEL LELAfTay - isacone::Latli ~ casacore:Lattice< 44 MB 44 MB
~ F 7 ~ casac 18M8 18MB
casacore:-Vector<sid 3 E “Vector 230.4 KB 230.4 KB
casacore: Atray<fioat, Sd-allocator<ioat>>- Atay 08 6.8GB
y , s1d 0B 11G8
O: dp = |Ins 108 205 306 408 505 605 05 B0s. 905 100s 1106
L 1 1 1 1 I 1 L L 1 L
g 1271 M8
£ pythonz7
g T

Figure 20: Bottom-up and peak memory consumption of WAsp

2.3.4 MS-MFS

Figures 21 and 22 show that the total memory consumption of MS-MFS is about 203 GB and the
peak memory consumption is about 188 MB. The majority of the MS-MFS memory consumption is
on updateRHS, updateModelAndRHS, and solveMatrixEqn, etc. WAsp memory usage is about 26% of
MS-MFS’s (53 GB vs. 203 GB) because it only needs to allocate memory for two scales instead of five
scales in MS-MFS.

Allocation Size: 203.3GB
Deallocation Size: 203.3 GB
Allocations: 4,356,560
Total Thread Count: 17
Paused Time = Os

() Top Memory-Consuming Functions 'k
This section lists the most memory-consuming functions in your application.

Function Memory Consumption Allocation/Deallocation Defta Allocations
casabcore:Array<fioat, std::allocator<float>>::Array 200.3 GB -254.0 KB 812,662
casabcore: Array<std::.complex<float>, std::allocator<std::complex<float>>>::Array 880.9 MB 00B 2,211
casa6core::FilebufiO:setBuffer 389.3 MB 0.0B 6,530
casaficore::Array<std:.complex<double>, std-:allocator<std::complex<double>>>::Array 262.1 MB 00B 40

casacore::MemorylO::Memorylo 153.9 MB 008 2,364

*NiA ts applied fo non-summable meirics.

Figure 21: Total and top memory consumption of MS-MFS

12

Memory Consumption @ f
Analysis Configuration Collection Log Summary ~ Botorm-up
Grouping:| (custom) Function f Function Stack
Function | Function Stack [Atocaton/Deallocation Deta | Allocation Size ¥
<foat, sical = Te— 254 KB 200.3GB
casabcore:: Array<float, std:allocator<float>>: Array 200.3 GB 200.3 GB
carray T lt<float, std. iplies=<fi , std::allocator<float=.isra. 237 85 GB 85 GB
= casa MultiTermMatrixCleaner: updateRHS ~ casa:Multi ixCleaner::upd lelAndRHS - casa:MultiTerm| 75.6 GB 75.6 GB
 casa:Multi leaner;uf HS =~ casa:Mult leaner.:miclean + casa:SD 9.4 GB 9.4 GB
CarmayT) , sid:p >, sid: allocator<float>>.isra.235.consiop.250 57.1GB 57.1GB
= casa MulliTermmatrixCleaner: solveMalrixEqn ~ casa: Multi ixCleaner:miclean - casa::SDAlgoritt 38 GB 38GB
A Casa: MUl leaner;;chooseComponent - casa:MultiTermMatrixCleaner;:mtclean ~ casa::SDAlgorithmmMSE 19 GB 19GB
= casa’Multi leaner::comp - casansh, TESIONe — Casa Decq 4.2 MB 42 MB
= casa’MultiTermMatricCleaner: ‘solveMatnxEqn ~ casa: MultiTermMatrxCleaner:miclean — casaSDAlgonthmMSMES: 1 I8 GB 38GB
= casa:MuliTermMatrixCleaner: :chooseCompanent - casa:Multi leaner:miclean - casa:'SD ME 19 GB 19GB
Array<float, std:: fl resize 557.8 MB S57.8MB
casabeore: LELAray<float=::LELArray 420.5 MB 4205 MB
= float, std::all ol copy -~ casaBeoresArray<fioat, I <float>>::assign_conforming_{ 67.2 MB 67.2MB
casabcore:LELFunctionFloat: eval 62.9 MB 629 MB
= casafcore:real — casa:StokesimageUtil:To — casa:refim::FTMachine:: lationToStokes — casacrefim i F1 41.9 MB 419 ME
e ipalsolution — casa:-SDAorit JES:restore - isDecom 4.2MB 42MB
- 1 Templi phefloat=:init — : pimage<foat=: P ~ casa:SD ASMFS::res] 2.1MB 21MB
= casaficore:LELFunctionlD<float=eval ~ casaGcore:LELBinary<float=eval ~ casaGcore: LatticeExpriodeeval — cas 1MB 1MB
casatoore: Array<sid::complex<float=, std::allocator<std::complex<float=>>:Aray 0B 880.9 MB
e an non o ain
(28 4 TR S B
% python3.6

Figure 22: Bottom-up and peak memory consumption of MS-MFS

3 Analysis

For AspClean, the most expensive function is getActiveSetAspen that dynamically optimizes scales at
every minor cycle. 83% of AspClean runtime is on getActiveSetAspen. 80% of the getActiveSetAspen
runtime is on the BFGS optimization function. Almost all of optimization function runtime is on the
fdf calculation (CASA code that consists of FFT (83%) and matrix operations (17%), etc). This
suggests the performance bottleneck of AspClean is FFT, and a GPU-based FFT may improve the
runtime performance. On the other hand, for the BFGS optimization, moving matrix calculations to
GPU may not be necessary because of the following analysis of matrix calculations vs. FFT runtime.

BFGS Asp matrix construct runtime 897 us
BFGS dAdS matrix calculation runtime 281 us
BFGS FFT runtime 206928 us

which shows matrix calculation is considered cheap compared to FFT. Section 3.1 summarizes the
key findings of this performance analysis.

3.1 Key Findings
e For AspClean

— 70% of aspclean is on casacore: :FFTServer: :££t0/f1lip; 30% of aspclean is on matrix
operations that are not localized in one function.

— For BFGS optimization, matrix calculation (17%) is considered cheap compared to FFT
(83%).

— Therefore, the performance bottleneck is at FFT, which is not seen in MS-Clean. A GPU-
based FFT may improve the runtime performance.

e For WAsp

— 62% of mtaspclean is spent on computeHessianPeak, 41% of which is on
casacore: :FFTServer: : ££t0 and 59% is on matrix operations.

13

— 17% of mtaspclean is spent on getActiveSetAspen, 73% of which is on
casacore: :FFTServer: :f1ip/£ft0 and the rest 27% is on matrix operations.

In summary, 38% of the WAsp runtime is spent on casacore: :FFTServer: :££t0/f1lip and
41% is on matrix operations that are more localized in computeHessianPeak.

Improve findMaxAbs may reduce computeHessianPeak runtime.

Therefore, GPU may be used to speed up the matrix operations.

Tables 1 and 2 below summarize the computational performance and memory consumption of the
four deconvolution algorithms in this analysis. Table 1 shows that AspClean/WAsp may be about
2x slower than baseline reference, MS-Clean/MS-MFS. This is quite manageable even for ngVLA and
we expect utilizing GPU can further improve the runtime performance. Section 4.2 shows that our
preliminary implementation of using the GPU-based FFT (i.e. cuFFT) in AspClean results in at least
2x speedup. This demonstrates utilizing GPU for the hotspot functions of deconvolution algorithms
is a worthwhile line of work to pursue for ngVLA.

Table 1: Computational Performance (jet dataset)

AspClean MS-Clean WAsp MS-MFS
number of iterations 2000 10000 4000 10000
gain 0.8 0.2 0.6 0.1
Metric (number of iterations x gain) 1600 2000 2400 1000
runtime 2 mins 29 sec to 4 mins 2 mins 12 sec 4 mins 48sec 3 mins 34sec

Table 2: Memory consumption

AspClean MS-Clean WAsp MS-MFS
Total memory usage (GB) 109 72 53 203
Peak memory consumption (MB) 180 346 127 188

Table 2 shows that the WAsp total memory usage is about 26% of MS-MFS (53 GB vs. 203 GB)
and is about 52% of AspClean (53 GB vs. 109 GB). Peak memory consumption is also analyzed here
because of the following reasons. The two attributes of memory system performance are generally
bandwidth and latency. Many techniques have been used to improve the performance of the memory
systems of computers for high performance computing. Some memory system design changes improve
one at the expense of the other, and other improvements positively impact both bandwidth and
latency. Bandwidth generally focuses on the best possible steady-state transfer rate of a memory
system. Usually this is measured while running a long unit-stride loop reading or reading and writing
memory. Latency is a measure of the worst-case performance of a memory system as it moves a small
amount of data such as a 32- or 64-bit word between the processor and memory. The theoretical
peak memory bandwidth can be calculated from the memory clock and the memory bus width. With
a large enough cache, a small (or even moderately large) data set can fit completely inside and get
incredibly good performance. One way to make the cache-line fill operation faster is to “widen” the
memory system. For example, instead of having two rows of DRAMs, multiple rows of DRAMSs can
be used. Since both AspClean and WAsp have lower peak memory consumption than MS-Clean and
MS-MFS, this is an improvement on the memory performance which suggests we may not need an
advanced memory system for deconvolution for ngVLA.

4 Performance Improvement from cuFFT

4.1 Stand-alone program

Since FFT is the bottleneck of the AspClean performance efficiency, a stand-alone CUDA program
was developed to compare the performance of CASA’s casacore: :FFTServer: :£ft0 (based on fftw)

14

and CUDA’s cuFFT. The program calculates the total runtime of cuFFT which includes moving an
image from CPU to GPU, doing a forward FFT by cuFFT, and then moving the image back to CPU.
Research shows that the CPU-based FFT approach (e.g. £ftw) is highly optimized for input sizes that
can be written in the form 2a x 3b x 5¢ x 7d. On the other hand, GPU-based FFT (i.e. cuFFT) shows
an FFT runtime difference of up to one order of magnitude for large input signals of power of 2 and
odd shape type.

Our study (Figure 23) compares the runtime of the casacore: :FFTServer: :££t0 (red) and cuFFT
(blue) for various image sizes. Kumar Golap earlier did an analysis on the runtime of FFTW 3.0 via
FFT2D wrapper, and observed that there is a distinct bump in slowness at image size of 4096 as compared
to 4000 and 5000. It is included (brown) and shown in Figure 23 as well. The FFT2D wrapper was
implemented in CASA because as the images become big, it is not the fftw part in FFTServer: :££t0
that dominates, but the memcpy which is serial in that implementation. Therefore, the FFT2D wrapper
was implemented with multithreaded fftshift and memcopies.

The result in Figure 23 shows that, with I/O time taken into consideration, cuFFT is faster than
fftw when image size is > 2048. cuFFT is also faster than FFT2D. The cuFFT itself, not considering data
movement, is much faster (about 8x) even for small images, so when more advanced high performance
computing architecture is available, we can see more performance improvements from using cuFFT.

FFT runtime
== CASAfft0 == cuFFT @ CASAFFT2D
0.25

0.20
0.156

0.10

time (second)

0.05

512*512 10241024 2500*1500 2048*2048 4000*4000 40964096 5000*5000

image size

Figure 23: Runtime of cuFFT vs. casacore: :FFTServer::fft0

4.2 cuFFT in AspClean

The stand-alone program described in Section 4.1 already shows cuFFT is faster than fftw for large
image sizes with considerations of data transfer between CPU and GPU. We next evaluated whether
cuFFT can also improve the AspClean computational performance in CASA. We utilized the CASA
build system for the HPG/roadrunner project that has CUDA dependencies and made additional
changes to make CASA able to use cuFFT. As a proof-of-concept study, we started with only replacing
the casacore: :FFTServer: :££t0 in the most time consuming BFGS optimization function in Asp-
Clean with cuFFT. This preliminary implementation shows a 40%-45% runtime reduction in the BFGS
optimization, which is equivalent to about 30% runtime reduction of the total AspClean runtime. This
2x speedup in the hotspot function of AspClean is only a lower-limit. More performance improvement
is expected when every ££ft0 in AspClean is replaced by cuFFT. It is worth noting that this prelimi-

15

nary study is conducted on the jet dataset which has an image size of 512x512. Based on the result
of the stand-alone program, £ft0 should be faster than cuFFT for this small image size. However, the
preliminary implementation demonstrates cuFFT in AspClean can improve runtime by at least 2x even
for small image sizes with the data transfer between memories factored in.

5 Conclusions

The primary goal of the work described in this memo is to identify issues in application of (W)Asp
deconvolution algorithms to ngVLA. The necessary prerequisite for this are:

e Determine the computing hot-spots in (W)Asp implementation and explore ways to deploy those
on a GPU for speed up for ngVLA.

e Analyze the memory consumption of the (W)Asp implementation and identify issues when run-
ning on the ngVLA computing architecture.

e As a baseline reference, give a short comparison with MS-Clean and MS-MFS of cost of computing
and imaging performance.

In this work, we did a detailed performance analysis of all four deconvolution algorithms and
identified the most-time consuming functions of the AspClean and WAsp. Based on this analysis, we
suggested a couple of ways to utilize GPU for speedup for ngVLA. As a proof-of-concept study, we
completed a preliminary implementation of using cuFFT in AspClean. This preliminary implementation
gives at least 2x runtime speedup and demonstrates that utilizing GPU for the hotspot functions of
deconvolution algorithms is a worthwhile line of work to pursue with data transfer between CPU-GPU
memories factored in.

In summary, this work provides the following insights for applying (W)Asp to ngVLA.

e AspClean and WAsp provides better imaging performance and are about 2x slower than MS-
Clean/MS-MFS in the current implementation running in serial on CPU.

e The performance bottleneck of AspClean is at FFT, while matrix operations in AspClean are

considered cheap. Thus, a GPU-based FFT may improve the AspClean runtime performance for
ngVLA.

e As a proof-of-concept study, an initial implementation that replaces the
casacore: :FFTServer: :££t0 in the most time consuming BFGS optimization function in As-
pClean with cuFFT already results in 40%-45% runtime reduction. It is worth noting that this
is only a lower-limit on the speedup. When every ££t0 in the AspClean is replaced with cuFFT,
more performance improvement is expected.

e For WAsp, 38% of the runtime is spent on casacore: :FFTServer::fft0/flip and 41% is on
matrix operations that are more localized in computeHessianPeak. Therefore, the matrix oper-
ations in computeHessianPeak may be moved to GPU for speedup for ngVLA.

e Both AspClean and WAsp have lower peak memory consumption than MS-Clean and MS-MFS.
This is an improvement on the memory performance which suggests we may not need an advanced
memory system for applying (W)Asp to ngVLA.

References

[1] Intel vtune profiler. https://www.intel.com/content/www/us/en/developer/tools/oneapi/
vtune-profiler.html#gs.vk69qgb.

16

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.vk69qb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.vk69qb

[2] S. Bhatnaga, R. Hiriart, and M. Pokorny. Size-of-computing estimates for ngvla synthesis imag-
ing. Technical report, ngVLA Memo 4, Aug. 2021. URL: "https://library.nrao.edu/public/
memos/ngvla/NGVLAC_04.pdf".

[3] M. Hsieh and S. Bhatnaga. Efficient adaptive-scale clean deconvolution in casa for radio interfero-
metric images. Technical report, Jan. 2021. URL: "https://safe.nrao.edu/wiki/pub/Software/
Algorithms/WebHome/ardg_aspclean.pdf".

17

"https://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf"
"https://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf"
"https://safe.nrao.edu/wiki/pub/Software/Algorithms/WebHome/ardg_aspclean.pdf"
"https://safe.nrao.edu/wiki/pub/Software/Algorithms/WebHome/ardg_aspclean.pdf"

	Introduction
	Performance Profiling
	Imaging Performance
	Hotspots
	AspClean
	MS-Clean
	WAsp
	MS-MFS

	Memory Consumption
	AspClean
	MS-Clean
	WAsp
	MS-MFS

	Analysis
	Key Findings

	Performance Improvement from cuFFT
	Stand-alone program
	cuFFT in AspClean

	Conclusions

