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ABSTRACT

1. INTRODUCTION

2. OVERVIEW OF SCALE SENSITIVE METHODS

A model of the true sky is computed via an iterative

image reconstruction scheme that uses a priori informa-

tion about the types of structures being imaged to esti-

mate the visibility function in regions of the spatial fre-

quency plane in which the interferometer has not made

measurements. The most commonly used deconvolu-

tion methods in radio astronomy are variants of Högbom

Clean Högbom (1974) which models the sky as a series of

delta functions. MS-Clean Cornwell (2008) uses a basis

of inverted truncated paraboloids of specific widths to

deconvolve structures with different scales. MF-Clean

Sault & Wieringa (1994) takes frequency information

into account. MS-MFS Rau & Cornwell (2011) combines

both MS-Clean and MF-Clean, and uses a Taylor poly-

nomial model to describe the frequency-dependent am-

plitude per multiscale flux component. Asp-Clean Bhat-

nagar & Cornwell (2004) algorithm explicitly fits for the

parameters of Gaussian flux components and uses scale

size to aid the separation of signal from noise. These

variants use the basic principle of Högbom Clean, i.e.

they search for the highest peak and subtract its contri-

bution iteratively. More deatils on these algorithms are

described in Sections 2.1, 2.2, and 2.3.

Recently, Offringa & Smirnov (2017) developed a new

multiscale deconvolution algorithm that can be used in

both single-frequency and multifrequency mode with the

automated scale-dependent masking technique. It is one

to three orders of magnitude faster than the CASA mul-

tiscale and mtmfs algorithms and produces results of

similar quality. Junklewitz, H. et al. (2015) developed

new Bayesian inference techniques that estimate the sky

brightness and the spectral index simultaneously. It out-

performs current multifrequency imaging techniques but

at a high computational cost.

2.1. The Multi-Scale Clean

MS-Clean retains the scale-shift-and-add nature of the

normal CLEAN algorithm by modeling the emission as a

collection of symmetric Gaussians at a few scales. First,

it pre-computes the convolution of these scales with the

PSF. Then at each iteration it smoothes the current

residual image with the scales and finds a global peak

among these smoothed residuals. The pre-computed

convolved PSF at the scale at which the peak was found

is subtracted from the residual images at all scales. A

Gaussian of the scale at which the peak was found is

added to the model image. MS-Clean recovers large

scale emission better than does the scale-less CLEAN

algorithm, but its scale sizes are restricted to the list of

scales that user provides.

2.2. Asp-Clean

The original Asp-Clean algorithm is described in

Bhatnagar & Cornwell (2004). Unlike MS-Clean, Asp-

Clean does not need a user-provided list of scales but

dynamically determines optimal scales. To accomplish

this:

1. It first defines a set of initial scales. This is done

by fitting a 2D Gaussian whose width is W to the

PSF, and the initial scales are defined as 0, W ,

2W , 4W , and 8W .

2. In each iteration, smooth the residual image by a

Gaussian beam at 0, W , 2W , 4W , and 8W .

(a) Search for the global peak (F ) among these

smoothed residual images, and add the “As-

pen” (i.e. Gaussian beam with width = op-

timal scale (e.g. 4W ), amplitude = F , and

centered at the location of the peak, (x, y),

to the “active set”.

(b) Optimize the Aspen(s) in the “active set”

by minimizing the objective function, IR −
activeset∗PSF , where IR is the residual im-

age.

(c) Compute the mode image and update the

residual image.

(d) Go to Step 2 unless the termination criteria

is met or the residuals are noise-like.

The original Asp-Clean algorithm developed by Bhat-

nagar & Cornwell (2004) keeps two sets of Aspens,

active set and the permanent list. Active set always

keeps the current optimal scale(s), while the permanent
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list keeps the previous and the current optimal scales.

In the Step 2 (c) above, it always evaluate all Aspens

in the permanent list onto an empty model image, and

always subtracts that full model image convolved with

the PSF from the original dirty image. That is,

Model = Aspen1 +Aspen2 + · · ·+AspenN

Residual = OriginalDirtyImage−Model ∗ PSF

2.3. Multi-Scale Multi-Frequency Deconvolution

The MS-MFS algorithm models the wide-band sky-

brightness distribution as a linear combination of spa-

tial and spectral basis functions, and performs image-

reconstruction by combining a linear-least-squares ap-

proach with iterative chi-square minimization. The out-

put of the MS-MFS algorithm is a set of Nt Taylor-series

coefficient images at Ns different spatial scales that rep-

resent the spectral structure of the sky brightness distri-

bution. The interactive process of MS-MFS that solves

the normal equations are described below.

1. For iteration i, the principal solution is computed

for all pixels, separately for all scales s, resulting

in Ns sets of Nt Taylor-coefficient images. Then

find the best flux component over all scales. The

result of this step is a set of Nt model images, each

containing one δ-function that marks the location

of the center of a flux component of shape Ishpp,(i)

(p represents the scale of the chosen component,

out of all possible values of s). The amplitudes

of these Ntδ-functions are the Taylor coefficients

that model the spectrum of the integrated flux of

this component.

2. Update model images by accumulating a set of Nt
multi-scale model images.

3. Update the RHS residual images by evaluating and

subtracting out the entire LHS of the normal equa-

tions.

4. Repeat from Step 2 until the minor-cycle flux limit

is reached.

3. THE WASP IMAGE RECONSTRUCTION

ALGORITHM

We describe a new multiscale deconvolution algorithm

that can also be used in a multifrequency mode. The

algorithm only affects the minor clean loop. In single-

frequency mode, WAsp has better imaging performance

than the CASA multiscale algorithm. For multifre-

quency deconvolution, WAsp also produces results of

better qualities than the MS-MFS algorithm.

Differences between the multi-scale and multi-

frequency parts of WAsp with the original Asp-Clean

and MS-MFS approaches are highlighted in Sections 3.1

and 3.2. The Appendix A provides more details on the

algorithm and how it is implemented in the CASA soft-

ware package.

3.1. Relation to the Original Asp-Clean

The original Asp-Clean algorithm gives a significantly

better imaging performance comparing to MS-Clean,

but Step 2(b) in Section 2.2 becomes inefficient for com-

plex images where the total number of Aspens can be

several hundreds. The Bhatnagar & Cornwell (2004)

paper described a heuristic approach that removes As-

pens which were significant to begin with but became

insignificant in the later cycles to speed up the compu-

tation.

In this work, we improved the original approach de-

scribed in Step 1 of Section 2.2 for defining the initial

scale sizes to prevent WAsp from picking a large scale

that has no constraints from the data. (Section 3.1.1).

Moreover, we developed a new approach that simpli-

fied the algorithm (see Section 3.1.2) and reduce the

runtime further without degrading the imaging per-

formance. Furthermore, we developed a fused decon-

volution algorithm that combines the scale-insensitive

Högbom CLEAN algorithm and the WAsp to further

improve the imaging performance and computational ef-

ficiency (Section 3.1.3).

3.1.1. Define Initial Scale Sizes

The original Asp-Clean defines the initial scale sizes

to be 0, W , 2W , 4W , and 8W , where the largest scale,

8W , may be too large or too conservative. Therefore, we

provided a user-defined tclean parameter,largestscale,

in CASA that allows to overwrite the default largest

scale(i.e. 8W ). This prevents WAsp from inadvertently

fitting large scale negative sidelobes in extreme cases,

like the jet dataset (Section 4.1). This also improves the

imaging performance for datasets that have partially-

measured structure on the largest spatial scales, where

8W may be too conservative to reconstruct a good

model, like the papersky dataset (Section 4.2).

When the largestscale is set, the initial scale sizes are

qauranteed to range from 0, W (i.e. the width of PSF),

2W , up to the largestscale size.

3.1.2. Update model and residual image using the latest
aspen

The original Asp-Clean only works in a single-

frequency mode and uses a heuristic approach to update

the model and the residual images with significant As-

pens (Step 2(c) of Section 2.2). We simplified this by
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only using the latest Aspen of each iterations to update

the model and the residual images. That is,

Model+ = LatestAspen

Residual− = LatestAspen ∗ PSF

Therefore, in every iteration there is only one Aspen

in the active set for optimization and there is no need

of a permanent list. The Asp-Clean algorithm is to

discover a basis set adopted to the structure in the

image, and the various heuristics are there to handle

a covariance matrix that is not diagonal at all. This

change keeps only the latest Aspen in the active set and

is approximating the matrix as a diagonal, which is also

what many optimization algorithms do and then iter-

ate. Therefore, it fits well in the larger theory as well.

Using this approach, the runtime is reduced by 3x-20x

comparing to the original approach without degrading

the imaging performance.

In a multifrequency mode, instead of computing the

principal solution for all pixels, separately for all scales,

and finding the best component as described in the Step

1 of the MS-MFS algorithm in Section 3.2, WAsp first

performs a modified Step 2 of the Asp-Clean algorithm

in Section 2.2. That is, WAsp first smoothes the first-

order Taylor coefficient residual image by the initial

scales to find the Aspen in Step 2(a). The Aspen is

then optimized in Step 2(b) by minimizing the objec-

tive function, IR − Aspen ∗ PSF , where IR is the first-

order Taylor coefficient residual image. This optimized

scale size is then used to update the model and resid-

ual images for all Taylor terms (Step 2 and Step 3 of

Section 3.2).

3.1.3. Fused deconvolution

To further reduce the wAsp runtime, WAsp can auto-

matically be switched to Högbom CLEAN when one of

the following criteria is met. It is worth noting that by

switching to Högbom CLEAN, it does not mean to call

the Högbom CLEAN function in the implementation,

but to force WAsp to use only the 0 scale for the period

of the iterations defined in Eq. ??.

1. The peak residual has rarely changed (i.e. change

is less than 1e-4 which is an experimental number)

for two iterations.

2. In ten consecutive iterations, more than five iter-

ations picks 0 scales (See Zhang (2018)).

3. Peak residual is smaller than a user-provided

threshold, fusedthreshold.

When Högbom CLEAN is ”triggered” (i.e. WAsp

would only use point-source flux components), it is ran

for the following number of iterations and then switched

back to WAsp.

NumHogbomIter = ceil(50 + 2(e0.05tn − 1)); (1)

, where NumHogbomIter is the number of iterations to

run Högbom CLEAN when Högbom CLEAN has been

triggered tnth times.

As described in Zhang (2018), the specific form of this

function is not important. Therefore, we simplified the

equation further and let ”Högbom CLEAN run” (i.e.

WAsp would only use point-source flux components) for

51 iterations. If it is approaching convergence, Högbom

CLEAN would run for longer iterations, 510 iterations,

instead. Convergence is automatically detected when

the root mean square of the residual is rarely changed.

The fused deconvolution saves computational time with-

out degrading imaging performance.

3.2. Relation to MS-MFS

In the narrow-band WAsp, a normalization method

was developed that gives the initial guess of the ampli-

tude which is then sent to a third party library for op-

timization (see Section A.4). The optimized amplitude

is basically the coefficient matrix, [Coeff ], in MS-MFS

with single Taylor term. The difference is that MS-MFS

solves [Coeff ] by

[Coeff ] = inverse[H] ∗ I dirty ∗ scale (2)

, where [H] is the Hessian matrix, and is given by

psf ∗ scale ∗ psf ∗ scale.
Therefore, the normalization method and the opti-

mization of Aspen in the narrow-band WAsp are ap-

proximation of solving the above equation. It is an ap-

proximation of the inverse 2x2 Hessian matrix applied

to the values at the location of the tt0 (the first Taylor

term) peak, pulled from both tt0 and tt1.

In a multifrequency mode, it is straightforward to use

the same methodology described above (i.e. using the

normalization method to get the initial guess of both

scale and amplitude which are optimized later) in WAsp

where the optimization library in this case would mini-

mize (I residual− [Coeff ] ∗ Psf ∗ scale) for all Taylor

terms. However, it is later determined this more com-

plicated methodology is not necessary. This is because

WAsp alreayd achieves much better results by optimiz-

ing scale for the tt0 only and using this optimized scale

in Eq. 2 to calculate [Coeff ] and to update the model

and the residual images for all Taylor terms.

Below summarizes the algorithms of WAsp. In single-

frequency mode:

1. Defines a set of initial scale sizes as described in

Section 3.1.1.
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2. In each iteration, smooth the residual image by a

Gaussian beam at the initial scale sizes.

(a) Search for the global peak (F ) among these

smoothed residual images to construct the

latest “Aspen”.

(b) Optimize the latest Aspen by minimizing the

objective function, IR−Aspen ∗PSF , where

IR is the residual image.

(c) Compute the mode image and update the

residual image.

(d) Go to Step 2 unless the termination criteria

is met or the residuals are noise-like.

In multifrequency mode:

1. Defines a set of initial scale sizes as described in

Section 3.1.1.

2. In each iteration, smooth the tt0 residual image by

a Gaussian beam at the initial scale sizes.

(a) Search for the global peak (F ) among these

smoothed tt0 residual images to construct the

latest “Aspen”.

(b) Optimize the latest Aspen by minimizing the

objective function, IR−Aspen ∗PSF , where

IR is the tt0 residual image.

(c) Update model images by accumulating a set

of Nt model images, each containing one δ-

function that marks the location of the center

of the Aspen.

(d) Update the RHS residual images by evaluat-

ing and subtracting out the entire LHS of the

normal equations.

(e) Repeat from Step 2 until the minor-cycle flux

limit is reached.

4. WASP IMAGING RESULTS

4.1. EVLA Simulation

To test the effectiveness of the WAsp algorithms for

wide band imaging, we use a simulation of a jet and lobe

like structure to showcase a realistic situation, namely

thin jets as well as a mix of compact and extended struc-

ture. The truth values of the source spectral index can

be derived from the smoothed model image cubes via a

pixel by pixel spectral index fit. For the jet, the bottom

spot had a flat spectrum and alpha goes from -0.2 to

-0.8 from the jet to the lobe, with alpha of -1.0 for the

spot at the top (Figure 1, left).

The dataset has 5 channels, going from 1 GHz to 2

GHz for the VLA D-config. Figure 1 shows that the

current MS-MFS solution (middle figure) cannot get the

spectral index correct for the long edges of the jet part,

and the WAsp (right figure) has the spectral index much

closer to the truth. Figure 2 shows the first, second and

third-order Taylor coefficient residual images for the MS-

MFS (top) and WAsp (bottom). The WAsp residual

images are more noise-like than MS-MFS.

Figure 1. Spectral index comparison between the truth
(left), MS-MFS (middle), and WAsp (right) on the jet
dataset.

Figure 2. Residual image comparison between the MS-MFS
(top) and WAsp (bottom) on the jet dataset.

4.2. EVLA Simulation for Non-Standard Conditions

To assess the methodology for setting the initial scale

sizes (Section 3.1.1), the narrow-band WAsp was tested

with the simulated dataset, paperjet, made to have

partially-measured structure on the largest spatial scales

(at and larger than the uv-hole). The lower channel

does not even measure it, so it cannot reconstruct it

strictly but the second and third channels see enough

of it. This under-constrained situation requires a mask

with MS-Clean in CASA, otherwise it will diverge.

Figure 3 compares the restored images for the MS-

Clean and WAsp. WAsp does not need a mask to

converge and gives better imaging performance. Fig-

ure 4 shows that the WAsp residual images is more

noise-like than MS-Clean. For these WAsp results, it

has largestscale = 70, although WAsp with the default

largest scale, 8W , also gives quite good result.



5

Figure 3. Restored image comparison between MS-Clean
(left) and WAsp (right) on the papersky dataset.

Figure 4. Residual image comparison between MS-Clean
(middle) and WAsp (right) on the papersky dataset.

4.3. VLA Observations of Cygnus-A

To demonstrate the effectiveness of the WAsp algo-

rithm on real data, it was applied to high dynamic-range

JVLA observations of the source Cygnus A. The data

was taken as part of a multiband observational cam-

paign on Cyg A, and is used here with the permission of

the investigators (Perley, private communication). The

particular subset of data used for this test consisted of a

single frequency channel of 2MHz channel width centred

on 2.052 GHz. Imaging is performed at a resolution of

0.2 arcsec and with an image size of 2048 x 2048 pixels.

Figure 5 compares the restored images for the Högbom

Clean, MS-Clean and WAsp. MS-Clean was run with

five scales of sizes 0, 10, 20, 30 and 60 pixels. WAsp

gives a better imaging performance without the need of

a highly tuned masking nor a highly fine-tuned list of

scales. Figure 6 shows that the WAsp residual image is

more noise-like than Högbom Clean and MS-Clean.

Figure 5. Restored image comparison between Högbom
Clean (left), MS-Clean (middle) and WAsp (right) on the
Cyg A dataset.

Figure 6. Reidual image comparison between Högbom
Clean (left), MS-Clean (middle) and WAsp (right) on the
Cyg A dataset.

4.4. Multi-Frequency Observations of a Supernova

Remnant G055.7+3.4

The G055.7+3.4 is a supernova remnant with a pulsar

within it and is an extended source with many angular

scales. Figure 7 compares the G055.7+3.4 spectral index

images for the MS-MFS (left) and WAsp (right). The

MS-MFS was run with five scales of sizes 0, 6, 10, 30

and 60 pixels and three Taylor coefficients in the spec-

tral model. The spectral index image for WAsp has

slightly smoother alpha values in the dimmer regions

of the source. The missing uv hole information makes

the reconstruction of the spectrum of the largest scales

unconstrained and WAsp does not compensate for that.

This is as expected since the same spectral model in MS-

MFS is used in WAsp. Figure 8 shows that the negative

bowl is much less in the restored image of WAsp which

indicates a better fit to the larger scales.

Figure 7. Spectral index comparison between the MS-MFS
(left) and WAsp (right) on the G055.7+3.4 dataset.
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Figure 8. Restored image comparison between the MS-MFS
(left) and WAsp (right) on the G055.7+3.4 dataset.

5. CONCLUSION

APPENDIX

A. APPENDIX A : ASPEN MODEL AND OPTIMIZATION

A.1. Aspen Model

Aspen is modeled by a 2D Gaussian component:

1

σ
√

2π
e−

(x−x0)2+(y−y0)2

2σ2 (A1)

, where σ is the scale size. However, this expression does not have unit area. To have a unit area, the 2D Gaussian

component should have the following expression:

1

2πσ2
e−

(x−x0)2+(y−y0)2

2σ2 (A2)

So we can actually see Eq. A1 as normalizing Eq. A2 by 1
σ
√
2π

.

A.2. Normalization Method for Initial Guess

Normalization in the Step 2(a) of Section 2.2 is critical on providing a good initial guess of the scale size and the

amplitude of an Aspen for optimization. Normalization here does not refer to the normalization of Gaussian components

to have unit area. Normalization method should be designed to avoid consequent 0 scales at the beginning, and also

the normalized optimal strength (i.e. initial guess of the amplitude of an Aspen) cannot be too large. Otherwise,

optimization algorithms will return very large scale size.

The steps below describes the normalization method used in the WAsp.

1. Convolved the residual image with the five initial scales, resulting ResConvInitScale[0 − 4]. The initial scales

are determined based on the methodology described in Section 3.1.1.

2. Find the global peak among ResConvInitScale[0− 4]. The global peak is denoted, itsStrengthOptimum.

3. Normalize itsStrengthOptimum by the normalization method described below, and this becomes the initial

guess of the amplitude of an Aspen for optimization.

The normalization method was developed based on the code of the original work (Bhatnagar & Cornwell (2004)).

It was modified to give the best results with our simplified approach to update the residual image. The mathematical

details are described below.

1. Model the initials scales by 2D Gaussian components (Eq. A1) and the residual image, Residual, is convolved

with the five initial scales as followed.

ResConvInitScale[i] = Residual ∗ 1

σi
√

2π
e
− (x−x0)2+(y−y0)2

2σ2
i (A3)

for each of the five scales, σi, except the 0 scale.
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2. Find the global peak among ResConvInitScale[0− 4].

itsStrengthOptimum = global peak(ResConvInitScale[i]) (A4)

3. The initial guess of the amplitude of an Aspen is calculated by

InitialGuessAmplitude =
itsStrengthOptimum

normalization
(A5)

, where

normalization =

√
2π

d
(A6)

, d =
√

1
PsfWidth2 + 1

σ2
opt

and σopt is the scale that gives the global peak in Step 2.

A.3. Objective Function for Aspen Optimization

The objective function that we want to minimize for optimization is

χ2 = ‖IR − a · (PSF ∗Aspen)‖2 (A7)

, where Aspen is defined in Eq. A1, IR is the residual image and a is the amplitude of the Aspen.

The partial derivatives of χ2 with respect to amplitude and scale are:

∂χ2

∂a
= −2(IR − a · (PSF ∗Aspen)) · (PSF ∗Aspen) (A8)

∂χ2

∂σ
= −2(IR − a · (PSF ∗Aspen)) · (a · (PSF ∗ Aspen

σ
) · ( (x− x0)

2
+ (y − y0)

2

σ2
− 1)) (A9)

It is worth noting that the matrix multiplication operator here, ·, should be element by element.

A.4. Optimization third party libraries

The original Asp-Clean implementation used GNU Scientific Library (GSL) for optimization in 2004. Since then,

many third party libraries have been developed for better computing performance. All of them have different API,

but the basic requirement is to pass an objective function for optimization through the API. The derivatives of the

objective function may not be required since some libraries can do the optimization without derivatives. A list of

optimization libraries were attempted to be used along with WAsp, and several challenges were encountered. The final

implementation of WAsp uses ALGLIB because it is not only stable but also computationally more efficient than GSL.

The optimization code is verified by fitting an Aspen to a simple dirty image (Gaussian component ∗ real PSF).

1. LBFGS++ (Qiu (2015)). It is a header-only C++ library that implements the Limited-memory BFGS algorithm

(L-BFGS) for unconstrained minimization problems, and a modified version of the L-BFGS-B algorithm for box-

constrained ones. Its API is easy to work with. It requires the Eigen library which is already part of the CASA

build. However, it is not robust and sometimes returns BFGS fitting error due to overfitting.

2. CppNumericalSolvers (Wieschollek (2016)). It is a lightweight C++17 library of numerical optimization meth-

ods for nonlinear functions. Its API is similar to LBFGS++, but returns very different results comparing to

LBFGS++.

3. GSL (M. Galassi et al. (2009)). It is a numerical library for C and C++ programmers and provides wide

range of mathematical routines, including optimization. The API is hard to work with and can easily cause

segmentation fault if not using the API correctly. Debugging segmentation fault with gdb is not useful and

requires special GSL API for debugging. A new class was created for passing Aspens and data between CASA

and GSL. GSL is more stable than the above two libraries, and this is probably because GSL provides a

restart function when an optimization step fails. GSL provides two methods for optimizing without derivatives,

gsl multimin fminimizer nmsimplex2 and gsl multimin fminimizer nmsimplex2ran. However, the former

returns very large scale sizes. The latter gives better optimization result but its runtime is 3x longer than the

optimization method with derivatives. Therefore, GSL optimization with derivatives was initially used in the

WAsp implementation.
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4. ALGLIB (Bochkanov (1999)). It is a cross-platform numerical analysis and data processing library and provides

various optimization methods. The performance analysis of WAsp shows that the optimzation step is the

performance bottleneck. Therefore, the more efficient ALGLIB is used in the final WAsp implementation and

improves computational performance by 2x than GSL.
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