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This note summarizes the key ideas involved in radio interferometric data analysis and image reconstruction,
and lists a series of references to algorithms documented in current literature as of Summer 2018.

1. DATA ACQUISITION

Each pair of antennas measures the degree of spatial correlation of the electric field incident at the locations of
the two antennas by computing the product of the voltage streams from one pair of antennas and integrating it
over a short timespan and narrow frequency range (over which phase coherence is preserved). An ideal complex
visibility measured by the antenna pair i, j can be written as V obs

ij = 〈EIE∗J〉.
In practice, each measurement is a 4-vector representing all possible products from the pair of orthogonal

feeds (detectors) present on each antenna and corrupted by the measurement process.

~V obs
ij = 〈 ~Eobs

i ⊗ ~Eobs∗

j 〉 = 〈[Ji] ~Ei ⊗ [Jj ]
∗ ~E∗j 〉 = ([Ji]⊗ [Jj ]

∗)〈 ~Ei ⊗ ~E∗j 〉 = [Kij ]~Vij (1)

where [Ji] represents a cumulative Jones matrix1–3 that describes the modulation imposed upon the two orthog-
onal axes of the incoming E-field during measurement.

The ideal van Cittert Zernike theorem describing the 2D Fourier relation between the sky brightness and the
sampled visibilities can be combined with the effect of the full-polarization measurement process from Eqn. 1 to
describe the visibility measured by baseline ij at one instant in time and at one frequency.

~V obs
ij (u, v) =

[
Kvis
ij

] ∫∫ [
Ksky
ij (l,m)

]
~Isky(l,m) e−2πi(ul+vm)dldm (2)

Here, ~Isky(l,m) is a 4× 1 vector of the sky brightness distribution (in the direction l,m) corresponding to either
the four correlation pairs or the four Stokes parameters. u, v represents the spatial frequency sampled by baseline
ij at one instant in time. [Kvis

ij ] is a 4× 4 matrix that represents direction-independent instrumental effects that

are constant across the field of view of each antenna (e.g. receiver gains). [Ksky
ij (l,m)] is a 4 × 4 matrix per

direction on the sky and it represents effects that vary with position on the sky (e.g. antenna primary beams,
pointing offsets, ionospheric effects and geometrical effects due to sky curvature and the non-coplanarity of the
array). When ~Isky(l,m) represent the four Stokes parameters [Kvis

ij ] is a Mueller matrix.

The effect of Ksky
ij (l,m) in Eqn. 2 is multiplicative in the image domain and can be represented as a convolution

in the visibility domain. Let Kdd
ij (u, v) represent the Fourier transform of Ksky

ij (l,m) (for each of the four
correlation pairs). Eqn. 2 can be re-written as follows with ? representing convolution for each correlation
product.

~V obs
ij (u, v) =

[
Kvis
ij

]{[
Kdd
ij (u, v)

]
?

∫∫
~Isky(l,m) e−2πi(ul+vm)dldm

}
(3)

Eqns. 2 and 3 describe the measurement equation for one visibility. In practice, ~V obs
ij is measured for all Na(Na−1)

2
pairs of antennas (i = 1 − Na and j = i − Na) for a series of integration timesteps and observing frequencies,
with up to four possible correlation products from each antenna pair.

Associated with each data point is also a weight, sometimes derived from known instrumental characteristics
and sometimes estimated during post-processing. Additionally, as radio telescopes operate at wavelengths where
there are plenty of man made communication signals and significant fractions of data can be affected by this
radio frequency interference. These corrupted data points must first be identified and then discarded or masked
prior to further processing. The practical result is that there will be gaps in the observations in time, freq as
well as non-uniform data weights.

The solution of Eqn. 3 for all baselines, times and frequencies involved in an observation is typically done in
two steps, calibration and imaging, sometimes involving iterations between the two.



2. SELF-CALIBRATION

The process of self-calibration uses observed visibilities from a known source (i.e. V true is known) to solve for
direction independent antenna-based complex gain solutions that form the [Kvis] matrix∗ from Eqn. 3. The
following system of equations (written per antenna pair i, j) is solved via an iterative non-linear least squares
optimization†.

~V obs
ij = [Kvis

ij ]~Vij where [Kvis
ij ] = ([Ji]⊗ [Jj ]

∗) (4)

The antenna-based calibration solutions [Ji] thus obtained are then applied to the observed data by con-
structing and applying the inverse of [Kvis

ij ]. A typical observation includes data from a known calibrator
source, interleaved in time with observations of the target. Gain solutions are calculated using the calibrator
data and then interpolated across the time ranges for which the target data must be calibrated. Sometimes,
self-calibration is performed on the target sky being imaged, in which case several iterations of calibration and
imaging may be done to successively refine both the calibration solutions as well as the image model.

Different instrumental effects are also usually handled separately in ways that maximize the signal-to-noise
ratio available to the solvers for each effect. For example, the spectral bandpass of the receiver is typically
stable across a few hour timescale. Therefore data from (say) 2 hours of observation may be used to derive a
single amplitude gain solution. On the other hand, phase stability may vary on a timescale of 10 minutes but
be consistent across frequency. In this case, gain solutions must be derived every few minutes but data from
multiple frequency channels may be used together to obtain a single number for the entire spectrum. A series of
calibration solutions and applications is typically performed for different physical reasons. Note that given the
structure of eqn. 4, it is possible to also perform a direct inversion of [Kvis] to derive corrections without the
formal constraint of the solution being a fundamentally antenna-based number, but this approach must be used
with abundant caution and only for well-understood and specific baseline-based errors.

2.1 Direction dependent effects

Direction dependent antenna-based effects arise from the physical shape and illumination pattern of each element
of the array (e.g. pointing, defocus, etc), geometrical effects relating to the sky curvature and non-coplanarity
of the array elements, and position dependent refraction effects due to ionospheric turbulence. As seen from
Eqns. 2 and 3, these effects can be modeled per antenna pair as either as convolutions in the visibility domain
or as multiplicative image domain effects, and this leads to two classes of algorithms to deal with them.

Projection methods4,5 apply wide-field instrumental corrections during image formation by carefully con-
structing convolution functions to use when resampling the visibility data onto a regular grid prior to the the
FFT that forms the observed image. These baseline and time-dependent convolution functions are chosen to
cancel out the effect of [Ksky]ij . For example, the W-Projection4 algorithm uses Fresnel kernels to derive con-
volution functions that compensate for the non-coplanarity of measurements on a single spatial frequency plane.
The AW-Projection5 algorithm derives convolution functions using models of the aperture illumination function
of each antenna in the array, corrects for known pointing offsets, and accounts for variability of these antenna
patters across time and baseline. These primary beam effects can be combined with W-term effects as well. The
WB-AWProjection6 algorithm additionally applies an approximate correction for the frequency dependence of
the instrumental primary beam as well. A full-polarization equivalent of A-Projection7 applies corrections for
the full Mueller matrix for use in wide-field full-polarization imaging. Higher order corrections using models that
describe the effective aperture illumination function due to ionospheric refraction have also been demonstrated.
These algorithms typically use physically motivated models of the various effects that can be derived theoretically
for geometrical corrections for wide-field non-coplanar effects or from measured holography data to characterize
antenna primary beams.5,8 Joint mosaic imaging9 is a related area where these algorithms apply.

∗This step typically ignores direction dependent effects represeted by [Kvis] or applies some pre-computed model.
Sec.2.1 describes algorithms that handle direction dependent terms
†Self-calibration solutions are related to performing an eigen value decomposition of the visibility correlation matrix

when there is only one dominant compact source in the field of view (or when the visibilities in the matrix represent
V obs/V true).



For effects that cannot be pre-computed because they vary in unpredictable ways, algorithms such as
SAGE10,11 and DD-Facets12 solve for direction-independent calibration solutions simultaneously in multiple
directions, typically towards all the brightest sources in the field of view. These algorithms often solve both for
calibration parameters and the sky model parameters iteratively in a self-calibration loop. Algorithms also exist
that model the variability in terms of physical antenna-based parameters and then iteratively solve for these
parameters from the data themselves. Pointing self-calibration13 is one such idea that derives and applies correc-
tions for antenna based pointing offsets (which can be related to the first order terms of a Zernicke polynomial
expansion of the aperture illumination phase structure).

3. IMAGING

Eqn. 2 can be written in discretized form14 with the true sky brightness distribution represented as a 1D vector
Iskymx1, a set of observed visibilities V obs

nx1 and a measurement operator [Anxm].

V obs = [Kvis][S][F ][Ksky]Isky (5)

Here, [S] represents the spatial frequency sampling function, [F ] is the Fourier Transform operator and [Kvis]
and [Ksky] represent direction independent and direction dependent instrumental (calibration) effects. In this
system of equations, only [S], [F ], [V obs] and an associated set of data weights [W ] are known. Calibration for
direction independent effects eliminates [Kvis] and for the purpose of image reconstruction we can assume that
a model of [Ksky] is also available.

A sky brightness model is therefore reconstructed from iteratively solving the following system of equations.

V obs = [A]Imodel = [S][F ][Ksky]Imodel (6)

An L2 minimization results in the following set of normal equations

[A†W ]V obs = [A†WA]Imodel (7)

The model is then iteratively built up as

Imodeli+1 = Imodeli + g[A†WA]+
(
A†W

[
V obs −AImodeli

])
(8)

In equations 7 and 8, [Ksky] is either approximated as an invariant term that can be combined with the
sky model being solved for (i.e. as part of Imodel) or incorporated within [A] to handle effects that differ across
baselines, frequency or time. In the latter situation, projection algorithms mentioned in Sec. 2.1 apply corrections
as part of the [A†W ] operator such that an average version of [Ksky] can still be factored out of the normal
equations and treated as part of the model.

With these simplifying assumptions, [A†WA] is a convolution operator.14 Therefore, Eqn. 7 describes the
convolution of the sky brightness distribution with a point spread function given by the spatial frequency sampling
function and weights. [A†W ] is the data-to-image transform and [A] is the forward model used to compute
visibilities to compare with the measured data. The data-to-image transform involves a convolutional resampling
(called gridding) to transfer a list of weighted visibilities onto a regular spatial frequency grid, prior to an FFT
that forms the observed image. The model-to-data transform does the reverse degridding operation by evaluating
model visibilities that can then be compared with the original data to compute residuals. Various derivations of
[W ] are used in weighting schemes that precondition the normal equations prior to their solution.

The update step in Eqn. 8 involves calculating an approximate inverse of the Hessian matrix [A†WA]. As the
spatial frequency sampling is incomplete, this Hessian is a singular matrix with no unique inverse. Therefore,
the solution to Eqn.7 is itself a non-linear optimization problem defined in the image domain. In its simplest
form, a pseudo-inverse derived from a diagonal approximation is used to normalize the observed image before a
greedy algorithm like CLEAN identifies flux components as delta functions at the locations of the peaks.



Figure 1. Image reconstruction follows a global iterative L2 minimization scheme with the update direction being
calculated by any non-linear image-domain optimization schemes. The data-to-image transform involves gridding the
irregularly sampled visibilties onto a regular grid prior to an iFFT and the model-to-data transform predicts visibilities
from the current best estimate of the sky model. The sky model solvers in the minor cycle are free to employ a wide
variety of non-linear parameterizations and optimization strategies.

3.1 Imaging Framework

Radio interferometric image reconstruction is typically implemented in a framework that consists of a pair of
nested loops as illustrated in Fig. 1. The data-to-image and model-to-data steps form the major cycle and the
derivation of model parameters from the observed (and residual) image is called the minor cycle. In the context
of the global L2 minimization described in Eq.8, the minor cycle is what computes the update step and the
major cycle reconciles this new model with the data to compute a new residual image. The non-linear image-
domain optimization algorithm implemented as the minor cycle can include a variety of sky parameterizations
and optimization strategies, some of which are listed in Sec. 3.2. There are also a variety of gridding algorithms,
summarized in section. 2.1 that can apply corrections for different wide-field effects (for example, differences in
antenna aperture illumination patterns and pointing offsets) by careful choices of gridding convolution functions.

The main reason for these nested loops is to minimze the computational load incurred if [A†W ] and [A] is
calculated for every step taken by the sky model solver. For large volumes of data, the data I/O, gridding and
de-gridding steps dominate the runtime, especially if projection algorithms are employed during gridding and
degridding. Modern software implementations include data partitioning for parallelization. Usually an imaging
run involves on the order of 10 major cycles but depending on the minor cycle algorithm used may require
anything between a few hundred to several tens of thousands of steps within each set of minor cycle iterations.
Convergence is typically assessed by how closely the residual image resembles Gaussian random noise.

A key element of this reconstruction approach is that not all steps need to be accurate. The data-to-
image transform may leave out some instrumental effects or only approximately correct them in order to speed
up the computation of the initial residual image. Some wide-field effects (such as the construction of joint
mosaics) naturally break the strict 2D Fourier transform relation making the observed image only an approximate
convolution between the sky and the point spread function and therefore not a perfect fit for the model being
solved for in the minor cycle. The minor cycle algorithm may itself may be approximate, using a greedy approach
to the solution of the normal equations in eqn. 7, and often ignoring issues arising from wide-field approximations.
In fact, it can be shown that algorithms that perform imaging in one step followed by one (iterative) deconvolution
step can be quite error prone. But, with errors within reasonable limits, as long as the model-to-data transform
is as accurate as possible, the global iterative (steepest descent) scheme does eventually converge to a viable
solution. The other advantage of a global L2-norm solution is its appropriateness for Gaussian random noise
especially when the desired astrophysics also depends on the residual noise statistics.



3.2 Image Reconstruction Algorithms

The oldest (and fastest) algorithms model the sky brightness as a collection of delta functions and use a greedy
approach to finding flux components simply as delta functions at the locatons of the peaks in the normalized
residual image. They usually begin with the brightest sources, subtract out their contribution to the observed
image (i.e. each flux component convolved with the point spread function) and iteratively move to weaker
sources upto some limit, before triggering a major cycle. Hogbom,15 Clark16 and Cotton-Schwab17 CLEAN are
all variants of this approach.

Algorithms such as Multi-Scale CLEAN18 and Multi-Term Multi-Frequency-Synthesis19 are multi-term deriva-
tions of the same global L2-norm approach. Multi-Scale Clean models the sky brightness as a linear combination
of flux components at a fixed set of scale sizes (including delta function for unresolved sources). Multi-Term
MFS performs joint wideband reconstructions by additionally modeling the amplitude of each multi-scale flux
component as a Taylor polynomial in frequency. It is therefore able to reconstruct the intensity and spectral
structure from multi-frequency data at an angular resolution given by the joint spatial frequency coverage. A
multi-resolution CLEAN is another variant of such an approach as is a TV-Clean20 that models smooth time
variability in addition to multi-scale and multi-frequency models. All of these methods can be interpreted as
first transforming the data and observed images into a basis or parameter space in which the signal is sparse,
and then using a greedy algorithm that is well suited to such sparseness.

There are also several constrained optimization solvers that go beyond linear models. The Maximum Entropy
method21,22 uses a pixel amplitude basis and solves for L2 combined with a relative entropy term that serves
to bias the solution towards externally provided a-priori information for parts of the parameter space where
constraints from the data may be insufficient. The non-negative least squares23 algorithm is another pixel-based
method that solves a least squared problem with linear inequality range constraints to impose positivity of all
pixels in the model. The ASP24,25 algorithm parameterizes the sky into a collection of Gaussians and does a
formal constrained optimization on their parameters using L2 as well as a TV-norm and uses sub-space selections
to refine and optimize the number of components being fitted. More recently, formal compressed-sensing theory
has have begun to be used to derive image reconstruction algorithms for radio interferometry.26 The SARA27

and PURIFY28 algorithms use a wavelet basis and a regularization based on imposing sparsity. RESOLVE
and its variants29 are a class of algorithms derived from a Bayesian formulation and applies constraints based
on log-normal statistics and desired spatial correlation structures. This algorithm is optimized for extended
emission and includes wideband models as well as polarization reconstructions involving Faraday rotation. The
unique contribution of this method is its ability to also produce uncertainty maps. Bayesian MCMC30 methods
have also been tried with promising results in producing uncertainty estimates, but which are computationally
impractical.MORESANE31 is another sparse deconvolution algorithm that explores more automation in choosing
appropriate atome with which to model the sky brightness. As originally formulated, many of these methods
rely on numerous expensive traversals through the data. However, adaptations to the practical major/minor
cycle approach used in most production imaging systems, as well as alternate algorithmic formulations (such as
a primal-dual formulation32 of the convex optimization problem) to speed up and or parallelize the computation
are ways in which these methods are currently becoming practical.

For mainstream practical use, all these image reconstruction algorithms must work along with direction
dependent calibration approaches such as those described in Sec. 2.1. The imaging framework described in Sec. 3.1
and implemented within software packages such as CASA (https://casa.nrao.edu/casadocs) is one clear way to
achieve this. The LOFAR sparse image reconstruction algorithm33 demonstrates a practical implementation of
a compressed-sensing base sparse solver within a framework similar to that described in Sec. 3.1. Alternate
formulations34 are also being explored to treat the calibration and image reconstruction process together.

Many of the above ideas can apply to optical interferometric reconstructions (and VLBI). Some sparse model-
ing approaches35,36 have been analysed in the context of traditional complex visibilities as well as reconstructions
from amplitudes and closure phases. This work was motivated by the imaging problem of the Event Horizon
Telescope. The optical interferometric imaging community also has their own suite of experimental algorithms.37

They have largely focused on narrow-band parametric and non-parametric Baysian approaches but have recently
begun to include multi-spectral models.



4. AUTOMATED DATA ANALYSIS

The large variety of calibration schemes and image reconstruction algorithms as described above naturally leads
to a situation of having to choose what is most appropriate for a given situation, especially when different
algorithms can potentially give different results. The different approaches also have widely varying computational
complexities and therefore choosing an approach is not simply a matter of choosing the most comprehensive
techniques. The data analysis process is therefore a sequence of interactive steps involving trial and error and
using intermediate results along with various rules of thumb to decide what algorithms are the most appropriate
for the specific imaging problem at hand, as well as to quantify the quality and degree of umabbiguity of the
final reconstructions.

In recent years, automated end-to-end data analysis pipelines have become a requirement in radio interfer-
ometry in order to deal with vast data volumes and to reduce the end user’s responsibility of having to learn
about and perform the entire data reduction sequence. For example, the ALMA telescope now routinely uses
a pipeline to deliver science-quality data products to its users‡. The VLA has a calibration pipeline for general
users and a specifically tuned imaging pipeline for an ongoing VLA Sky Survey §. These are the initial versions
of such end-to-end automated systems, tuned to specific observing modes and data products, and often still
involving manual intervention for troubleshooting and quality assurance. It is a topic of active ongoing research
to generalize such solutions and either automate or optimize their development process.

The ability to produce reliable uncertainty maps is an another area of interest. In radio interferometry,
existing techniques are very compute intensive making it impossible to run on modern radio interferometer data,
but they certainly are feasible approaches for sparse coverages encountered in optical interferometry and in very
long baseline radio interferometry.
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