Calibration Algorithm/Heuristics Topics for the EVLA

George Moellenbrock 2011 Aug 4

Themes

- Interdependence of (interference between?) calibration and imaging effects
 - "All calibration is relative" to prior calibration ("ACIR") (propogation of errors poorly understood)
 - Generalized self-cal: revise more than just gain
 - A systematic approach to high dynamic range: sort limiting effects
 - How are imaging algorithms limited by calibration?
 - Can we rely on carefully balanced symmetries---some introduced by poor calibration partitioning---to 'cancel' subtle effects?
- Balanced strategy
 - High DR approach (big, bright sources, wide fields)
 - Simpler, broader scientific utility approach (modest sources, narrower fields)
 - Need to (re-)discover boundaries here

Topics

- Calibration Models, old and new
- Bandpass calibration now general
- Phase → Delay (self-)calibration
- Some ~quantitative examples
 - Switched power calibration
 - Delay clunking
 - Instrumental polarization
- Efficacy of uv continuum subtraction vs. deconvolved continuum model

Traditional Calibration Model

- Serialized, generally scalar, calibration solves (image at earliest convenience)
 - 1. Gain
 - Bandpass (if relevant)
 - 3. Instrumental polarization (if relevant)
 - 4. Baseline-based calibration (if necessary, to cope with closure errors)
- Motivations (perhaps partly in hindsight)
 - It basically works, and made VLA a very productive instrument
 - Easy to communicate to most users (but many users fail to comprehend, alas)
 - Circular feed basis conveniently enables essentially scalar approach (hides polarization, unless needed)
 - (Compare VLBA: enough additional complexity to frustrate?)

Traditional Calibration Model (cont)

- Self-cal generally limited to Gain
- Best work includes use of specific priors to fully leverage designed instrumental stability and otherwise maintain the standard serialized approach ("ACIR")
 - Pointing (online)
 - Opacity, gaincurve corrections and standard calibrator models enable stable measure of electronic gain among sources for accurate flux density scale transfer
 - Ionosphere corrections enable stable measure of electronic R-L phase for transfer among sources
 - Zenith delay (VLBA), antenna position corrections enable phase-referencing with minimal systematics between calibrator(s) and target

MS-Clean only

MS-Clean + MFS + W-proj

How is visibility calibration relevant to the remaining residuals?

Modern Calibration Model

- Acknowledge interdependence of solved-for calibration terms
 - "All calibration is relative" to all previous terms (some provisional)
 - This is generalized self-cal: improve instrument model as well as source model
 - Compare: Iterative imaging algorithms gain leverage via accurate geometric model of fringe
- Explicit non-scalar treatment
 - Polarized effects (instrumental polarization, squint, etc.) are important
 - EVLA sensitivity vastly improved, but some systematics, e.g., instrumental polarization same (or a bit worse?)
- New priors
 - Switched-power calibration (a practical feature of EVLA, cf VLA)
 - Instrumental polarization? (simple, stable enough?)
 - Bandpass?
- A more complete partitioning of effects, in general
 - Systematic approach to high dynamic range (discourage blcal!)
- Challenge: maintain comprehensibility!
 - NB: Traditional approach supplemented, not excluded, by this view

Bandpass Calibration Now General

- Including delay
 - Explicit delay solution vs. implicit treatment via conventional bandpass ("ACIR")
- Iterate bandpass with gain(t) calibration to optimize both ("ACIR")
- Calibrator models important
 - Spectra (including visibility)
 - Frequency coverage of f.d. models
- Instrumental polarization is frequency-dependent
 - Also, R-L phase (position angle calibration) is literally a bandpass phase (including a delay, in general)
- Averaging over an underlying bandpass mismatch no longer an important closure error contributor

Phase -> Delay (self-)calibration

- Troposphere is the least stable calibration effect
 - It is a delay, treat it like one
 - (Ionosphere requires 1/f model)
- Leverage full bandwidth
 - Maximize self-cal SNR
 - Access weaker calibrators
- Inter-band calibration
 - Calibrate one band with another ("ACIR")
 - VLA was limited here by lack of band-relative instrumental stability
 - (Critical calibration strategy for ALMA)

Switched Power Calibration

- EVLA correlations not normalized
 - for fixed input radio source signal (i.e., no gain curve, opacity effects, etc.), mean output visibility is constant, even if T_{sys} varies. Visibility noise varies according to T_{sys} .
 - Delivered weights uniform (=1.0); do not reflect inverse variance of the data
 - Recall VLA: visibility amplitude is normalized fraction of total power, so decreases with increasing T_{sys} . Raw noise (and weights) constant. Corrected via 'nominal sensitivity' (${}^{\sim}T_{sys}$) calibration (same for VLBA, ALMA)
- Fundamentally, SNR is set at the amplifier
 - observed bandpass shape mainly introduced downstream by baseband filters and other sampling-related scale effects
 - SNR(freq) (as set by 'forward' sensitivity properties) remains essentially constant in passage through post-amplifier electronics, except at band edges where filter's noise contribution begins to dominate (i.e., signal and noise ~equally 'filtered')

- Measure antenna-based total power (T_{sys}) at correlator inputs with and without injected T_{cal} contribution
 - Captures all post-amplifier scale changes; per subband
- Correct visibility amplitude by T_{cal} response (switched power difference)
 - Reconciles inter-subband amplitude scale (to ~K)
- Correct weights by 1/sqrt(Tⁱ_{sys}T^j_{sys})
- Compare to ordinary 'gain calibration'
 - $-V_{corr} = GV_{obs}$
 - $wt_{corr} = wt_{obs}/|G|^2$ ($wt_{obs} \sim 1/\sigma_{obs}^2$; 'calibrate σ ')
 - Assumes V_{obs} & wt_{obs} in consistent units

Switched Power Gotchas

- (Compression issues under investigation...)
- Ordinary gain calibration only (with weight calibration) will down-weight low-amplitude subbands relative to high-amplitude subbands ("ACIR")
- Fractional switched power gain error (per integration) adds significant (antenna-based) noise to corrected visibilities
 - Small T_{cal} signal response is difference of single-baseline (single dish) power measurement (vs. $sqrt(N_a-1)$ advantage of ordinary gain calibration)
 - Correctable via self-cal at timescale of switched-power correction
 - Avoidable via smoothing (bounded at attenuator or other changes)

Delay Clunking

- AKA "fractional bit-shift error"
- A temporary effect for the early EVLA
- Voltage samples finite (0.5nsec for 8-bit sampling) and correlator delay registration finite, but true delay actually changes continuously
 - Sawtooth delay residual of +/- 0.25 nsec (+/-5.5 deg peak jitter at 128 MHz subband edges)
 - Period follows the delay rate: slow near transit and within North arm
- 'Averages down (zero mean) over long observation to relative negligibility...'

Delay clunking (cont)

- ...or does it?
- Bandpass calibration scan may not have time to average down efficiently, so its (non-zero) clunking delay residual becomes the zero point of the clunking average for all bandpass-calibrated observations ("ACIR!")
- Suppose a rms (over baselines) delay residual of ~0.1nsec
 - Net rms (baseline-based) coherence loss ~0.00026 (over 128 MHz)
 - Best case via sqrt(351) is DR < 70000:1
 - Averaging over subbands doesn't help (?)

Instrumental Polarization

 Traditionally, instrumental polarization calibration only used for source polarization measurements (cross-hands):

$$RL_{ij} = (Q + iU)e^{i(-\phi_i - \phi_j)} + D_{iR}D_{jL}^*(Q - iU)e^{i(+\phi_i + \phi_j)} + D_{iR}(I - V)e^{i(+\phi_i - \phi_j)} + D_{jL}^*(I + V)^{i(-\phi_i + \phi_j)}$$

But it affects total intensity, too ("ACIR"):

$$\begin{split} RR_{ij} &= (I+V)e^{i(-\phi_i+\phi_j)} + D_{iR}D_{jR}^*(I-V)e^{i(+\phi_i-\phi_j)} \\ &\quad + D_{iR}(Q-iU)e^{i(+\phi_i+\phi_j)} + D_{jR}^*(Q+iU)^{i(-\phi_i-\phi_j)} \\ &= I\Big(1+D_{iR}D_{jR}^*\Big) + D_{iR}(Q-iU)e^{i2\phi} + D_{jR}^*(Q+iU)^{-i2\phi} \end{split}$$
 (V~0, small array)

Instrumental Polarization (cont)

- Some (anecdotal?) evidence of limited dynamic range already
 - Constant blcal on unpolarized source works well (DD term)
 - Constant blcal on long integration of polarized source works less well (time-variable DP terms)
 - (narrow field-of-view)
- Prototype WIDAR correlator closure phase averaging tests were probably limited by instrumental polarization

Baseline-based Visibility Calibration

~short integration on 3c286 (~10% polarized)

PTC Closure Phase Tests

Pairwise averaging, first over channel, then time

Instrumental Polarization (cont)

- Prototype correlator closure phase averaging RMS (w.r.t. zero) systematically limited to 0.0005-0.001 rad (0.03-0.06 deg)
 - Non-zero closure phase
- Plausible causes: source structure, correlator problems, instrumental polarization
 - D=2-3% (per antenna, randomly distributed phase) will necessarily cause closure phase errors at the observed level, just from the constant DD term (imaginary part)
- Dynamic range will be limited
 - DD~0.0004-0.0009, ~random over baselines
 - Best case, via sqrt(351), DR< 21000-47000
 - Small (not just stable) instrumental polarization desirable
- How does gain calibration respond? ("ACIR")

Instrumental Polarization (cont)

- Conventional instrumental polarization determination limited to a relative solution for a small array
 - No differential parallactic angle within array
 - Second order terms difficult to leverage
- Absolute solution desirable
 - Linear feed basis (ALMA, EVLA < 1 GHz) provides leverage using linearly polarized calibrator, with (I+/-Q) multiplying D (rather than (I+/-V) with $V^{\sim}O$)stay tuned....
- Application of relative solution should be adequate for total intensity (at least)
 - Yields an orthogonal basis (sufficient for formation of Stokes I), just not pure
 - Gain calibration should be reconciled ("ACIR")
 - QUV will be distorted, possibly correctable with appropriate calibrator assertions ($V^{\sim}0$, etc)

UV Continuum Subtraction

- An additive blcal calibration (baseline-based solution subtraction)
- Claim: works better than subtracting deconvolved continuum model
 - Subtracting noise?
 - Indiscriminately subtracting un-modeled effects along with continuum?
- Lesson: If you are going to partition effects, must do so completely!