
Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

CASA
Parallelization and ���
High Performance
Computing	

Concepts, Implementation, and
Issues	

Jeff Kern	

CASA Group Lead	

CASA
CASA and HPC
•  CASA does not have a HPC issue.
–  We must support efficient operation on the available

hardware.
•  CASA has focused on two “standard” systems:

Workstation
•  Multi-core system
•  Local disk
•  Single shared memory

Cluster
•  Many multi-core nodes
•  High performance network

file system (Lustre)
•  No shared memory access

CASA
Definitions
•  Core: A single processing element which reads and executes instructions.
•  Node: A single host, in modern systems usually has multiple cores.
•  Engine: A single instance of CASA connected through a messaging

interface, in most cases a single engine consumes a single core.
•  Master Engine: The primary engine which is responsible for dispatching

jobs to other engines
•  Multi-Process: Many independent processes each with their own process

space.
•  Muti-Threaded: A single process with multiple threads of execution,

multiple threads can share the same memory object.

3

CASA
The processing performance problem
•  Many tasks in CASA require traversing the entire data set and are data IO

limited.

4

Peak Data
Rate

OS Realized
Data Rate

Time for 500
GB file

SATA Disk 115 MB/s 60 MB/s 2h 22 m

Raid 200-500 MB/s 375 MB/s 22 m

Lustre (10 GB) 1.2 GB/s 700 MB/s 12 m

https://science.nrao.edu/facilities/evla/data-processing/hardware-recommendations

•  Even imaging [in the simplest case] is IO limited, requiring about 50 MB/s
per core to prevent the CPU from incurring wait states.

CASA
Lustre
•  Running against Lustre can provide significant performance improvement,

but where you run from matters.
•  How the data is arranged on Lustre impacts performance as well.

5

Lustre Filesystem

Cluster Node Workstation

40 Gb/s 1 Gb/s

CASA
Embarrassingly Parallel Approach
An embarrassingly parallel workload is one for which little or no effort is required to

separate the problem into a number of parallel tasks, this is often the case
where there is exists no dependency between the parallel tasks.

-Wikipedia

•  Most of the tasks which require access to large amounts of data fit this
description.

•  Imaging does not strictly fit this definition but can the communication
between processes is only at certain points in the cycle so it is also an
easily solved issue.

6

–  Flagging of Data
–  Applying Calibration

–  Time Averaging Data

CASA
Reference MSs
•  The easiest way to parallelize in CASA is to have multiple instances of

CASA each running on a subset of the data.
–  To simplify the interface and minimize bookkeeping for the user we

use a reference MS.

7

Original MS

Sub MS 1

Sub MS 2

Sub MS 3

Sub MS 4

Sub MS 5

MS
Selection

Reference MS

MS
Reference

CASA
Partition
•  To simplify creation of the reference MS, use the task Partition.
•  Contains usual data selection parameters:

8

•  Data column
•  Field
•  Spw

•  Antenna
•  Scan
•  Scan Intent

•  Array
•  UV-Range

•  If createmms is true a reference MS is created which contains at least
numsubms sub MSs

•  Partitioning also has the effect of distributing the sub-MSs across multiple
raid controllers on Lustre, thus improving I/O performance.

CASA
Separation Axis
•  Partition accepts three axis to do separation across default, spw, scan

9

Sp
ec

tr
al

 W
in

do
w

Scan Number

Calibration Scans

CASA
Separation Axis

10

Sp
ec

tr
al

 W
in

do
w

Scan Number

Separation Axis = ‘scan’
Num Sub MS = 5

CASA
Separation Axis

11

Sp
ec

tr
al

 W
in

do
w

Scan Number

Separation Axis = ‘spw’
Num Sub MS = 5

CASA
Separation Axis

12

Sp
ec

tr
al

 W
in

do
w

Scan Number

Separation Axis = ‘spw’
Num Sub MS = 12

8 Sub MSs

CASA
Separation Axis

13

Sp
ec

tr
al

 W
in

do
w

Scan Number

Separation Axis = ‘default’
Num Sub MS = 5

CASA
Separation Axis

14

Sp
ec

tr
al

 W
in

do
w

Scan Number

Separation Axis = ‘default’
Num Sub MS = 12

CASA
Separation Axis
•  Setting calmsselection to ‘manual’ allows selection on Field, Scan, or Intent.
•  ‘auto’ does a selection based on scan intent

15

Sp
ec

tr
al

 W
in

do
w

Scan Number

Outputvis.001.ms

Outputvis.cal.ms

OutputVis

CalMsName

CASA
Pre-Imaging Tasks
•  After partitioning, any task which works on the MS in place (e.g. does not

create a new MS) and does not modify the subtables can be parallelized
fairly easily.

•  So far I have only done those tasks which offered the most significant
performance improvement for minimal investment :

16

•  More tasks can easily be added as we identify which are most necessary
•  Flag_cmd
•  SetJy

–  ClearCal –  FlagData –  ApplyCal

CASA

Major Cycle Minor Cycle

Imaging

17

Residual
Image

Model
Image Predict

Image Correct
Data

•  Parallelization of imaging does not depend on how the data is
partitioned in any way.
•  Partitioning is a simple way to distribute the data more

efficiently within the Lustre file system.

CASA
Continuum Imaging

18

Processing Engines

Master Engine

•  So far for continuum imaging we have only parallelized the major cycle.

CASA
Running Continuum Imaging
•  So far parallel clean is only available at the tool level.

19

>>> from parallel.pimager import pimager
>>> imager =pimager()
>>> imager.pcont(arguments)

•  We plan to incorporate this into the task once a few more features have
been enabled and after we have sufficient experience with users to be
confident.

CASA
Running Continuum Imaging
•  Controlling the switch between major and minor cycles and how deeply

to clean is fairly manual at the moment.

•  The user specifies:
–  majorcycles integer number of CS major cycles to do
–  niter: maximum number of clean iterations to execute
–  threshold: string quantity of the residual peak at which to stop

deconvolving
•  e.g. ‘0.1 mJy’

•  Between each CS major cycles the minor cycle will fit niter/majorcycles
components.

•  If threshold is reached at any time the clean cycle will stop.

20

CASA
Running Continuum Imaging

•  contclean: Boolean specifying if we are continuing a clean or starting new
–  If false the imagename.model is deleted otherwise clean will continue

from previous run

By setting contclean = True the clean process can be resumed to clean deeper
or with a new mask.

21

CASA
Running Continuum Imaging

22

The online help has definitions for the arguments many are the
same as normal imaging:

•  msname: input measurement set
•  imagename: output image
•  imsize: list of 2 numbers [nx,ny] defining image size in x and y
•  pixsize: list of 2 quantities ['sizex', 'sizey'] defining the pixel size

–  e.g ['1arcsec', '1arcsec']
•  phasecenter: an integer (field index) or a direction

–  e.g 'J2000 19h30m00 -30d00m00'
•  field: field selection string
•  spw: spw selection string

CASA
Running Continuum Imaging
•  stokes: string specifing imaging stokes

–  e.g 'I', 'IV
•  ftmachine: the ftmachine to use (see Sanjay’s lecture)

–  ft, wproject, mosaic
•  facets: integer the number of facets to split image into.
•  alg: string specifying the algorithm

–  Current possibilities are 'clark', 'hogbom', 'msclean'
•  weight: string

–  e.g 'natural', 'briggs' or 'radial'
•  robust: float valid for 'briggs’
•  scales: scales to use when using alg='msclean'

23

NOTE: wproject and mosaic are still being tested

CASA
Running Continuum Imaging
•  These parameters are either not yet fully implemented, have been

deprecated, or are available for developer use.
–  hostnames: deprecated use ‘’ (empty string)
–  numcpuperhost: deprecated use any integer

•  visinmem: Boolean load visibility in memory for major cycles set to False
•  These parameters are to support the work ongoing work on A-

Projection, simply use the default values.
–  painc, cfcache, pblimit, dopbcorr, applyoffsets epjtablename

24

CASA

Processing Engines

Spectral Line Imaging
•  Each plane of the output cube can be done independently.

25

Master Engine

CASA
Running Parallel Spectral Imaging

>>> from parallel.pimager import pimager
>>> imager =pimager()
>>> imager.pcube(arguments)

26

•  Like parallel continum clean there is no task (yet) for parallel
spectral line imaging.

•  Most arguments are the same as for the Continuum case
•  The maskimage parameter is an input image mask. If it is not the

same shape as the final cube a best guess interpolation is done.
•  Interactive clean is not supported in this mode, suggestions are

welcome.

CASA
Running Spectral Line Imaging
•  A new parameter has been introduced in the pcube method: chanchunk

–  chanchunk determines how many output channels are handled
simultaneously by each of the processing engines.

–  The trade off here is between the amount of I/O and the memory
footprint.

27

Number of Engines

Chan Chunk 6 11 12

1 123 min 98 min 96 min

4 73 min 51 min

8 59 min 43 min

16 57min

Serial Reduction: 351 min

Once we have understood the
heuristics we expect to

handle this parameter in
the Task.

CASA
Resource Specification
•  The computing hardware resources available to CASA are specified in a

cluster specification file.
–  By default CASA assumes that it should use all of the cores available

on the current system.
•  Specification file looks like:

28

<hostname>, <number of engines>, <working dir>
casa-dev-06, 4, /lustre/jkern/parallelTest/cont.large
casa-dev-07, 8, /lustre/jkern/parallelTest/cont.large

•  You must be able to ssh without typing a password to all of the systems
listed in your specification file.
•  If you do not have a specification file you must be able to ssh back to

local host
•  See the NRAO goldbook for instructions on setting up ssh.

CASA
Resource Specification
•  In order to instruct CASA to use the resources in your cluster

configuration file:

29

>>> from simple_cluster import simple_cluster
>>> simple_cluster().init_cluster(<clusterFile>)

•  After these lines all tasks or tools which can make use of the
parallelization will use these resources.

CASA
Advanced Usage
•  For experts there are some helper functions to assist in making use of the

parallelization.
•  JobData is a python class which encapsulates work to be done on a single

engine:

30

>>> from simple_cluster import JobData
>>> myJob = JobData(‘flagdata’, <Argument Dictionary>)

•  JobQueueManager is responsible for executing a set of jobs on the cluster

>>> from simple_cluster import JobQueueManager
>>> queue = JobQueueManager()
>>> queue.addJob(myJob)
>>> queue.executeQueue()

•  This will return when all jobs have either succeeded or broken.
Return state can be found from the queue object.

•  Check the online help for more details on using these classes.

