Common Astronomy
Software Applications

CASA
Parallelization and
High Performance
Computing

Concepts, Implementation, and
Issues

Jeff Kern
CASA Group Lead

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array
Robert C. Byrd Green Bank Telescope

Very Long Baseline Array

CASA and HPC

e CASA does not have a HPC issue.

— We must support efficient operation on the available
hardware.

* CASA has focused on two “standard” systems:

Workstation Cluster
* Multi-core system * Many multi-core nodes
* Local disk * High performance network
* Single shared memory file system (Lustre)

* No shared memory access

-

Definitions

* Core: A single processing element which reads and executes instructions.
* Node: A single host, in modern systems usually has multiple cores.

* Engine: A single instance of CASA connected through a messaging
interface, in most cases a single engine consumes a single core.

* Master Engine: The primary engine which is responsible for dispatching
jobs to other engines

e Multi-Process: Many independent processes each with their own process
space.

* Muti-Threaded: A single process with multiple threads of execution,
multiple threads can share the same memory object.

The processing performance problem

* Many tasks in CASA require traversing the entire data set and are data |O

limited.
o
Rate Data Rate GB file
SATA Disk |15 MB/s 60 MB/s 2h 22 m
Raid 200-500 MB/s 375 MB/s 22 m
Lustre (10 GB) 1.2 GB/s 700 MB/s 12 m

* Even imaging [in the simplest case] is 1O limited, requiring about 50 MB/s
per core to prevent the CPU from incurring wait states.

https://science.nrao.edu/facilities/evla/data-processing/hardware-recommendations

R

CASA

* Running against Lustre can provide significant performance improvement,
but where you run from matters.

* How the data is arranged on Lustre impacts performance as well.

Lustre

Workstation Cluster Node

40 Gb/s

Lustre Filesystem

Embarrassingly Parallel Approach

An embarrassingly parallel workload is one for which little or no effort is required to
separate the problem into a number of parallel tasks, this is often the case
where there is exists no dependency between the parallel tasks.

-Wikipedia

* Most of the tasks which require access to large amounts of data fit this
description.

— Flagging of Data — Time Averaging Data
— Applying Calibration

* Imaging does not strictly fit this definition but can the communication
between processes is only at certain points in the cycle so it is also an
easily solved issue.

-

Reference MSs

* The easiest way to parallelize in CASA is to have multiple instances of
CASA each running on a subset of the data.

— To simplify the interface and minimize bookkeeping for the user we
use a reference MS.

MS Sub MS |

Selection
Original MS Sub MS 2
MS Sub MS 3

Reference

Sub MS 4

Reference MS

@ | Sub MS 5
7

Partition

To simplify creation of the reference MS, use the task Partition.

* Contains usual data selection parameters:

* Data column * Antenna * Array
* Field * Scan * UV-Range
* Spw * Scan Intent

If createmms is true a reference MS is created which contains at least
numsubms sub MSs

Partitioning also has the effect of distributing the sub-MSs across multiple
raid controllers on Lustre, thus improving I/O performance.

Separation Axis

* Partition accepts three axis to do separation across default, spw, scan

Calibration Scans

Spectral Window

& Scan Number
9

Separation Axis

Separation Axis = ‘scan’
Num Sub MS =5

Spectral Window

Scan Number

I0

Separation Axis

Separation Axis = ‘spw’
Num Sub MS =5

Spectral Window

Scan Number

Separation Axis

Separation Axis = ‘spw’

Num Sub MS @

Scan Number

8 Sub MSs

Spectral Window

12

Separation Axis -
Separation Axis = ‘default’

Num Sub MS =5

pectral Window

Scan Number

3

Separation Axis -
Separation Axis = ‘default’

Num Sub MS = 12

Spectral Window

Scan Number

14

Separation Axis

* Setting calmsselection to ‘manual’ allows selection on Field, Scan, or Intent.

 ‘auto’ does a selection based on scan intent

CalMsName Outputyvis.cal.ms

OutputVis Outputvis.001.ms I!

Spectral Window

@ Scan Number
15

Pre-Imaging Tasks

* After partitioning, any task which works on the MS in place (e.g. does not
create a new MS) and does not modify the subtables can be parallelized
fairly easily.

* So far | have only done those tasks which offered the most significant
performance improvement for minimal investment :

— ClearCal — FlagData — ApplyCal

* More tasks can easily be added as we identify which are most necessary
* Flag_cmd
* Setly

-

CASA

Imaging

Major Cycle Minor Cycle

Image

Predict

* Parallelization of imaging does not depend on how the data is
partitioned in any way.

* Partitioning is a simple way to distribute the data more

@ efficiently within the Lustre file system.
17

CASA

* So far for continuum imaging we have only parallelized the major cycle.

Continuum Imaging

Master Engine

Running Continuum Imaging

* So far parallel clean is only available at the tool level.

>>> from parallel.pimager import pimager
>>> jmager =pimager()

>>> imager.pcont(arguments)

* We plan to incorporate this into the task once a few more features have
been enabled and after we have sufficient experience with users to be
confident.

-

Running Continuum Imaging

-

Controlling the switch between major and minor cycles and how deeply
to clean is fairly manual at the moment.

The user specifies:
— majorcycles integer number of CS major cycles to do
— niter: maximum number of clean iterations to execute

— threshold: string quantity of the residual peak at which to stop
deconvolving

* eg. ‘0. mjy
Between each CS major cycles the minor cycle will fit niter/majorcycles
components.
If threshold is reached at any time the clean cycle will stop.

Running Continuum Imaging

* contclean: Boolean specifying if we are continuing a clean or starting new

— If false the imagename.model is deleted otherwise clean will continue
from previous run

By setting contclean = True the clean process can be resumed to clean deeper
or with a new mask.

21

Running Continuum Imaging

The online help has definitions for the arguments many are the

same as normal imaging:
* msname: input measurement set
* imagename: output image
* imsize: list of 2 numbers [nx,ny] defining image size in x and y
* pixsize: list of 2 quantities ['sizex’, 'sizey'] defining the pixel size

— e.g['larcsec!, 'larcsec']

* phasecenter: an integer (field index) or a direction

— e.g 'J2000 19h30m00 -30d00mMO0"
 field: field selection string

* spw: spw selection string

-

Running Continuum Imaging

* stokes: string specifing imaging stokes
—eg'l,'lV
e ftmachine: the ftmachine to use (see Sanjay’s lecture)
— ft, wproject, mosaic NOTE: wproject and mosaic are still being tested
* facets: integer the number of facets to split image into.
* alg: string specifying the algorithm
— Current possibilities are 'clark’, 'hogbom', 'msclean’
* weight: string
— e.g 'natural’, 'briggs' or 'radial’
* robust: float valid for 'briggs’

* scales: scales to use when using alg='msclean’

-

Running Continuum Imaging

* These parameters are either not yet fully implemented, have been
deprecated, or are available for developer use.

— hostnames: deprecated use ” (empty string)
— numcpuperhost: deprecated use any integer
* visinmem: Boolean load visibility in memory for major cycles set to False

* These parameters are to support the work ongoing work on A-
Projection, simply use the default values.

— painc, cfcache, pblimit, dopbcorr, applyoffsets epjtablename

-

Spectral Line Imaging

* Each plane of the output cube can be done independently.

\

25

Running Parallel Spectral Imaging

>>> from parallel.pimager import pimager
>>> imager =pimager()
>>> imager.pcube(arguments)

* Like parallel continum clean there is no task (yet) for parallel
spectral line imaging.
* Most arguments are the same as for the Continuum case

* The maskimage parameter is an input image mask. [f it is not the
same shape as the final cube a best guess interpolation is done.

* Interactive clean is not supported in this mode, suggestions are
welcome.

26

Running Spectral Line Imaging

* A new parameter has been introduced in the pcube method: chanchunk

— chanchunk determines how many output channels are handled
simultaneously by each of the processing engines.

— The trade off here is between the amount of I/O and the memory

footprint.

Serial Reduction: 351 min

Once we have understood the

heuristics we expect to

handle this parameter in
the Task.

Number of Engines

Chan Chunk 6 | 12

I 123 min | 98 min 96 min
4 73 min 51 min

8 59 min 43 min

16 57min

27

Resource Specification

* The computing hardware resources available to CASA are specified in a
cluster specification file.

— By default CASA assumes that it should use all of the cores available
on the current system.

* Specification file looks like:

<hostname>, <number of engines>, <working dir>

casa-dev-06, 4, /lustre/jkern/parallelTest/cont.large

casa-dev-07, 8, /lustre/jkern/parallelTest/cont.large

* You must be able to ssh without typing a password to all of the systems

listed in your specification file.

* If you do not have a specification file you must be able to ssh back to
local host

* See the NRAO goldbook for instructions on setting up ssh.

28

Resource Specification

* In order to instruct CASA to use the resources in your cluster
configuration file:

>>> from simple_cluster import simple_cluster
>>> simple_cluster().init_cluster(<clusterFile>)

 After these lines all tasks or tools which can make use of the
parallelization will use these resources.

Advanced Usage

* For experts there are some helper functions to assist in making use of the
parallelization.

* JobData is a python class which encapsulates work to be done on a single
engine:

>>> from simple_cluster import JobData
>>> myjob = JobData(‘flagdata’, <Argument Dictionary>)

* JobQueueManager is responsible for executing a set of jobs on the cluster

-~

>>> from simple_cluster import JobQueueManager
>>> queue = JobQueueManager()

>>> queue.addfob(myjob)

>>> gueue.executeQueue()

This will return when all jobs have either succeeded or broken.
Return state can be found from the queue object.

Check the online help for more details on using these classes.

30

