A(perture)-to-Z(ernikes) Solver Methodology

Srikrishna Sekhar, Preshanth Jagannathan, Brian Kirk, Sanjay Bhatnagar, Russ Taylor

Outline

- Primary Beams and Imaging.
 - Antennas and primary beams
 - Measurement Equation
 - Image plane correction

- Modelling antenna Aperture Illumination Patterns (AIP)
 - Zernike Polynomial Basis
 - Modelling the AIP
 - Results

Antennas and Primary beams

AIP

PB

Measurement Equation

$$V_{ij}^{Obs} = W_{ij}G_{ij}\int \mathbf{M}_{ij}(\mathbf{s})I_{ij}(\mathbf{s})e^{i\mathbf{b}_{ij}.\mathbf{s}}d\mathbf{s}$$
 Direction independent Mueller Matrix Sky Brightness Distribution Gains

$$V_{ij}^{obs}(\mathbf{s}, \nu, \theta_{PA}) = A_{ij}(\mathbf{s}, \nu, \theta_{PA}) \circledast V_{ij}^{True}$$

Discretized version of the integral equation entirely in the Fourier Domain.

Wideband Primary Beams

- Primary beams are not azimuthally symmetric typically
 - Common approximation
 - Not suitable for HDR imaging
- Primary Beams vary with time for an Alt-Az mounted antenna

• Primary Beams are Chromatic

Spectral Behaviour of PB

Wideband Primary Beams

• Primary beams also encode the leakage of one stokes parameter into another.

Sky Brightness & Mueller Matrices

$$\vec{V}_{ij}^{M} = \mathcal{F}\vec{I}^{M} = \mathcal{F}\sum_{i,\nu,t} \left(M_{ii} \cdot I_{i}^{sky} + \sum_{j,i \neq j} M_{ij}I_{j}^{sky} \right)$$

$$\vec{I^M} = \sum_k \begin{pmatrix} M_{\text{II}}^k I + M_{\text{IQ}}^k Q + M_{\text{IU}}^k U + M_{\text{IV}}^k V \\ M_{\text{QI}}^k I + M_{\text{QQ}}^k Q + M_{\text{QU}}^k U + M_{\text{QV}}^k V \\ M_{\text{UI}}^k I + M_{\text{UQ}}^k Q + M_{\text{UU}}^k U + M_{\text{UV}}^k V \\ M_{\text{VI}}^k I + M_{\text{VQ}}^k Q + M_{\text{VU}}^k U + M_{\text{VV}}^k V \end{pmatrix}$$

Where the index k can be time or frequency

Zernike Polynomials

- Originally defined to study ionosphere
- Defined on a unit circle
- Extensively used to model aperture illumination in optics
- Ties various polynomials to actual optical effects - astigmatism, coma etc.

Aperture Modelling

- Use Zernike polynomials to model the complex aperture.
- Why aperture?
 - Natural domain to model optical effects that cause PB weirdness
 - Aperture size is fixed, determined by geometry of antenna dish.
- Telescope agnostic only requires holography measurements

Aperture Modelling

Any good modelling should find physical effects such as secondary reflection.
 EVLA - 17MHz and MeerKAT - 37MHz.

Aperture Models - EVLA S-Band

Aperture Models - MeerKAT L-Band

Fractional Residual PB

EVLA PB Models

ALMA PB Models

PB residuals

Summary

- Modelling PB and AIP are equivalent
- Zernike Polynomials are a natural basis for modelling complex antenna jones.
- We have successfully modelled PB's from three different telescopes, operating at widely different frequencies, across all polarizations.
- Our modelling allows for integration into projection like framework & image plane corrections
- Telescope agnostic Limited only by availability of high quality Holography
- Image plane corrections are possible. Check out open source package on GitHub

Checkout our image plane correction package

https://github.com/ARDG-NRAO/plumber

