NGVLA antenna overview

S. Padin

Caltech

Top-level questions

 Diameter
 number

 25m
 270

 18
 520

 12
 1170

Total collecting area

10× VLA?

number & size of antennas

any requirements for wide field of view?

Surface error

 $180\mu m \ rms?$

how important is $\lambda=3$ mm?

efficiency —

site

Surface rms	η
λ/10	0.206
λ/20	0.674
λ/40	0.906

Efficiency

Cost of an efficient antenna $\propto \lambda^{-1/2}$ Efficiency $\eta = \exp(4\pi\delta/\lambda)^2$ $\delta = \text{surface error}$

Effective area of array $A_{tot} \propto \eta N$ N=number of antennas Cost of all antennas $\propto A_{tot} \times [-log(\eta)]^{1/4} / \eta$

For a given A_{tot} , D, & λ , efficient antennas minimize the cost but you might choose lower efficiency antennas to get more area at longer λ

Cost vs. antenna size

Cost model for steel/Al antenna, η =0.8 Cost of all antennas = N×[1.5(D/18m)^{8/3}(λ /10mm)^{-1/2} + 1] \$M Number of antennas Structure, panels etc. Servo, installation

Mid-level questions

Reconfigurability
 Drives cost of structure & operations

On or off axis

```
Do any science goals demand very low scattering/sidelobes? If not, cost determines the choice  \begin{array}{c} \text{mm $\lambda$} \\ \text{Off axis cost $^{\sim}2\times$ on axis (SPT vs. ALMA)} \\ \text{On axis blockage 3% (1% for secondary, 2% for support)} \\ \text{Antenna cost $^{\sim}D^{8/3}$} \\ \text{Cost off/on axis=2/1.03$}^{8/3}=1.8 \\ \text{longer $\lambda$} \\ \text{Off axis cost $^{\sim}5/4\times$ on axis (e.g., GBT)} \\ \text{On axis blockage might be 10% (secondary diameter 10s of $\lambda$)} \\ \text{Cost off/on axis$}^{\sim}1 \\ \end{array}
```

Selecting feeds by tilting the secondary may favor on axis (cf. ALMA) RFI between adjacent antennas may be worse for off axis

Details

Materials

Steel/Al vs. steel/CFRP

Don't need CFRP for performance, so this is mainly a cost decision

Long term stability a bigger concern for CFRP?

Panel size

Pointing metrology

Traditional, stiff structure vs. floppy structure with metrology Maintenance is a concern with metrology

Offset arm at top or bottom Bottom gives lower noise at low EL

Top gives less expensive structure

Polarization

Feed will probably dominate Stability generally more important than absolute value

Shaping

~7% improvement in efficiency Requires a specific feed pattern Can't tilt secondary to switch between feeds

Formed Al panels

Panel thermal gradient

Formed Al panels

Next steps

Understand science constraints

A_{tot} & surface error set the scope of this project (antenna cost, site)
 D likely unconstrained
 Reconfigurability is an important cost driver
 Polarization, scattering, sidelobes, shaping probably not so important but determine on vs. off axis, receiver details

Identify candidate approaches

e.g., today's presentations Start working with companies

• Develop models for cost vs. D, λ (and maybe on/off axis)

Limited information from companies

Scientists want max performance/\$; companies want max \$

Small contract(s) to develop cost models?

Write antenna requirements

Need basic requirements for prototypes
Require good design practice?
symmetry
flexures at material change