LNA’s for the 1.2 to 55 GHz Range

Sander Weinreb

1. Semiconductor technology applicable to cryogenic LNA’s
2. Examples of discrete and integrated circuits
3. LNA for 1.2 to 8.4 GHz
4. Prototype LNA for 8 to 55 GHz
5. System noise
Cryogenic LNA Noise is Limited by the Transistors Available from Semiconductor Foundries

- Both HEMT and HBT transistors are used in radio astronomy LNA's.
- Amplifiers can be constructed either from discrete transistors (MICs) or from monolithic integrated circuits. (MMICs)

<table>
<thead>
<tr>
<th>Semiconductor</th>
<th>Application</th>
<th>Key Players</th>
<th>Development Pace</th>
<th>Key Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>InP HEMT</td>
<td>Cooled, > 5 GHz</td>
<td>Northrop, HRL, Teledyne, IAF Chalmers</td>
<td>Slow</td>
<td>Yield,</td>
</tr>
<tr>
<td>GaAs HEMT</td>
<td>Cooled > 5 GHz</td>
<td>WIN, Triquint OMMIC</td>
<td>Slow</td>
<td>Noise</td>
</tr>
<tr>
<td>SiGe HBT</td>
<td>Cooled < 5 GHz</td>
<td>ST, IBM, NXP, Jazz, Infineon</td>
<td>Moderate</td>
<td>Beta</td>
</tr>
<tr>
<td>CMOS FET</td>
<td>Cooled < 20 GHz</td>
<td>Intel, IBM, TSMC</td>
<td>High</td>
<td>Needs Tests</td>
</tr>
</tbody>
</table>
Monolithic Integrated Circuit (MMIC) Amplifiers
Examples of HEMT and SiGe Chips

Assuming an effective dielectric constant of 9, a 0.5mm path length will contribute a 90° phase shift at 40GHz! SiGe and CMOS processes allow for much more compact feedback loops!

Entire active part of 2 stage amplifier
Including feedback loop within 50umx40um

Apr 9, 2015
LNA's for ngVLA
Monolithic Millimeter-Wave Integrated Circuits

Example of a MMIC layout with transmission lines, capacitors, resistors, and active devices on a single substrate. Above chip's dimensions are 2.0 x 0.74 x 0.1 mm.

Advantages
- reduced mass and volume
- repeatable performance
- low cost in large quantities
- fine-controlled dimensions through photolithography
- easy to mass produce

Disadvantages
- low-Q passive elements
- limited power handling
- long design iteration time
- limited post-fabrication tuning
- requires specialized test and evaluation equipment
- difficult assembly and interconnection
Caltech ST Microelectronics SiGe Reticule, 2010
Size: 2.3 x 4.1 mm = 9.43 mm²

24 Discrete Transistors
0.3 x 0.3 mm

1-2 GHz Dif LNA CALS 11-26 LNA

R Tests
Salycide
N+Poly
P+Poly

WBA20
0.1 -12 GHz

ASU Low Power

WBA21
0.1-12 GHz

0.5-3 GHz

16 – 5x 15um=75um
4 – 4x5x12um =240um
2 – 2x10um=20um
2 – 1x10um=10um

Apr 9, 2015
SiGe IC Cross-Section
Many interconnect layers enable complex circuits
Wideband Cryogenic LNA Development at Caltech

- In a 10 year period over 1200 cryogenic LNA’s in the 0.1 to 50 GHz range have been supplied by Caltech to international radio astronomy and quantum physics research groups.
- The LNA’s incorporate InP, GaAs, and SiGe transistors and integrated circuits developed in 4 Ph.D. theses at Caltech.
- Cryogenic LNA’s for 75 to 115 GHz have been developed at Caltech and JPL and have achieve noise temperatures as low as 25K.
- Data and a photograph of on a 1 to 25 GHz LNA is shown below.

<table>
<thead>
<tr>
<th>Country or Institution and Number Sold</th>
<th>Japan</th>
<th>83</th>
<th>US</th>
<th>335</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>77</td>
<td>Caltech/JPL</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>63</td>
<td>Harvard/SAO</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>51</td>
<td>Berkeley</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>47</td>
<td>Yale</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Caltech LNA for ngVLA 1.2 to 8.4 GHz Band

- Noise <6K from 0.8 to 16 GHz
- Utilizes OMMIC GaAs MMIC available in large quantities
- Amplifier is very stable and repeatable; over 20 in use
- Input power for 1dB gain compression is -36 dBm
Prototype of ngVLA 8 to 55 GHz LNA

- An 8 to 50 GHz MMIC InP HEMT LNA was designed and tested at Caltech in 2012 and shows potential for under 20K noise.
- Amplifier utilizes a Northrop InP MMIC process
Total System Noise Estimate

<table>
<thead>
<tr>
<th>Noise, K, due to component</th>
<th>Remarks</th>
<th>Tsys 1.4 GHz</th>
<th>Tsys 10 GHz</th>
<th>Tsys 40 GHz</th>
<th>Tsys 80 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky</td>
<td>Background + atmosphere</td>
<td>4</td>
<td>6</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>Spillover & Blockage</td>
<td>Reduce with offset antenna</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Feed loss</td>
<td>Estimate 0.3 dB @80K for 1.4 GHz @20K for 8-116 GHz</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Window loss</td>
<td>Mylar windows</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Feed to LNA</td>
<td>0.30 dB</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>LNA</td>
<td>Robust LNA measured at connector</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>Estimate, +/- 5K</td>
<td>29</td>
<td>24</td>
<td>50</td>
<td>94</td>
</tr>
</tbody>
</table>
Atmospheric Noise is Appreciable for the ngVLA

- Noise above 40 GHz is weather and altitude dependent; curves below are for zenith at sea level
- The 55-70 GHz range is not covered by receivers.