Technology Concepts for Next Generation VLA Workshop, Pasadena, April 9, 2015

LNA's for the 1.2 to 55 GHz Range

Sander Weinreb

- 1. Semiconductor technology applicable to cryogenic LNA's
- 2. Examples of discrete and integrated circuits
- 3. LNA for 1.2 to 8.4 GHz
- 4. Prototype LNA for 8 to 55 GHz
- 5. System noise

Cryogenic LNA Noise is Limited by the Transistors Available from Semiconductor Foundries

- Both HEMT and HBT transistors are used in radio astronomy LNA's
- Amplifiers can be constructed either from discrete transistors (MICs) or from monolithic integrated circuits. (MMICs)

Semi- conductor	Application	Key Players	Development Pace	Key Factor	
InP HEMT	Cooled, > 5 GHz	Northrop, HRL, Teledyne, IAF Chalmers	Slow	Yield,	
GaAs HEMT	Cooled > 5 GHz	WIN, Triquint OMMIC	Slow	Noise	
SiGe HBT	Cooled < 5 GHz	ST, IBM, NXP, Jazz, Infineon	Moderate	Beta	
CMOS FET	Cooled < 20 GHz	Intel, IBM, TSMC	High	Needs Tests	

Monolithic Integrated Circuit (MMIC) Amplifiers Examples of HEMT and SiGe Chips

Assuming an effective dielectric constant of 9, a 0.5mm path length will contribute a 90° phase shift at 40GHz! SiGe and CMOS processes allow for much more compact feedback loops!

Monolithic Millimeter-Wave Integrated Circuits

Example of a MMIC layout with transmission lines, capacitors, resistors, and active devices on a single substrate. Above chip's dimensions are $2.0 \times 0.74 \times 0.1 \text{ mm}$.

Advantages	Disadvantages
reduced mass and volume	low-Q passive elements
repeatable performance	limited power handling
low cost in large quantities	long design iteration time
fine-controlled dimensions through photolithography	limited post-fabrication tuning
easy to mass produce	requires specialized test and evaluation equipment
INA's for ngVIA	difficult assembly and interconnection

Caltech ST Microelectronics SiGe Reticule, 2010

Size : $2.3 \times 4.1 \text{ mm} = 9.43 \text{ mm}^2$

24 Discrete Transistors 0.3 x 0.3 mm

1-2 GHz Dif LNA CALS 11-26 LNA

R Tests Salycide N+Poly P+Poly

16 - 5x 15um=75um

4 - 4x5x12um = 240um

2 - 2x10um = 20um

2 – 1x10um=10um

WBA20 0.1 - 12GHz

ASU Low Power

WBA21

0.1-12

GHz

LNA's for ngVLA

0.5-3 GHz

SiGe IC Cross-Section

Many interconnect layers enable complex circuits

	AM, aluminum, t=4um	
. ◆ 4ıım		
→ .	LY, aluminum, t=1.25um	A
4um	MQ, copper, t=0.55um	
<u> </u>	• •	
♦ 2.2=	M4, copper, t=0.32um	
<u> </u>	M3, copper, t=0.32um	
<u> </u>	• •	
A	M2, copper, t=0.32um	
<u> </u>	M1, copper, t=0.29um	
[↑] 0.45um		
or rount	Substrate	

Wideband Cryogenic LNA Development at Caltech

- In a 10 year period over 1200 cryogenic LNA's in the 0.1 to 50 GHz range have been supplied by Caltech to international radio astronomy and quantum physics research groups.
- The LNA's incorporate InP, GaAs, and SiGe transistors and integrated circuits developed in 4 Ph.D. theses at Caltech
- Cryogenic LNA's for 75 to 115 GHz have been developed at Caltech and JPL and have achieve noise temperatures as low as 25K
- Data and a photograph of on a 1 to 25 GHz LNA is shown below.

Country or Institution and Number Sold				
Japan	83	US	335	
Germany	77	Caltech/JPL	72	
Korea	63	Harvard/SAO	39	
China	51	Berkeley	33	
France	47	Yale	13	

Caltech LNA for ngVLA 1.2 to 8.4 GHz Band

- Noise <6K from 0.8 to 16 GHz
- Utilizes OMMIC GaAs MMIC available in large quantities
- Amplifier is very stable and repeatable; over 20 in use
- Input power for 1dB gain compression is -36 dBm

ec e all

OMMIC WBA118B in SN804D Noise and Gain at 19k Vd=1.0V 24mA; Vg1= +.5V Vg2=+.5V with 11:1 Divider Jul 21, 2014 File 3174 With PCB112B IMN with 10K Quartz

Prototype of of ngVLA 8 to 55 GHz LNA

- An 8 to 50 GHz MMIC InP HEMT LNA was deigned and tested at Caltech in 2012 and show potential for under 20K noise.
- Amplifier utilizes a Northrop InP MMIC process

Total System Noise Estimate

Noise, K, due to component	Remarks	Tsys 1.4 GHz	Tsys 10 GHz	Tsys 40 GHz	Tsys 80 GHz
Sky	Background + atmosphere	4	6	20	55
Spillover & Blockage	Reduce with offset antenna	10	7	7	7
Feed loss	Estimate 0.3 dB @80K for 1.4 GHz @20K for 8-116 GHz	5	1	3	3
Window loss	Mylar windows	2	3	3	3
Feed to LNA	0.30 dB	5	1	2	1
LNA	Robust LNA measured at connector	3	6	15	25
Total	Estimate, +/- 5K	29	24	50	94

Atmospheric Noise is Appreciable for the ngVLA

- Noise above 40 GHz is weather and altitude dependent; curves below are for zenith at sea level
- The 55-70 GHz range is not covered by receivers.

