Lessons from CARMA

David Woody

CARMA antennas

size	10-m	6-m	3.5-m
optical config.	symmetric bent cass.	symmetric cass.	symmetric bent cass.
	85 honeycomb hex	4 rings of machined	5 rings of machined
surface	panels	cast panels	cast panels
secondary	XYZ control	Z control	static
	cab outside EL		
rec'r location	bearings	cab at cass focus	box at cass focus
	jack screw, screw		jack screw, worm
EL mechanism	rotates	friction wheel	driven nut
	bull gear, 2 pinions,		bull gear, 2 pinions,
	cycloid reduction,	friction wheel, cycloid	cycloid reduction, 1
AZ mechanism	two motors	reduction	motor
			electrically
motors	brushed DC	stepper	communtated
	active tiltmeters,	passive tiltmeters,	
metrology	optical camera	optical camera	passive tiltmeters

Maintenance strategies

- Easy to change modules
 - All motors, gears and bearings (including AZ and EL bearings)
 - Accessibility with plug and play
- Extensive monitoring
 - Extensive diagnosis and reporting
 - Software is not easy

Concerns

- High slew and tracking speed will be important
- Pointing will be difficult for good 3 mm performance
 - Wide field mapping => fast slewing => dynamic pointing => high f₀
 - High fidelity and dynamic range imaging requires excellent pointing
 - Need tighter specification
- Surface accuracy will be expensive
 - High fidelity and dynamic range imaging requires good stable primary beam
 - Need tighter specifications
- Weather seeing will dominate the high frequency performance
 - Precision conditions for telescope nominal performance are too limited
 - Good seeing is not always correlated with "precision conditions"
- Telescope control code
 - Open source
 - Easy to modify and update
 - Modern interface
 - Complete set of requirements and specifications

Possible array configuration

Slice through PSF beam at 3 mm

ngVLA: Lessons from CARMA

Snapshot synthesized beam at 100 GHz

$$s_{\text{max}} \approx \frac{2}{N} \ln(mag)$$

$$s_{\text{max},opt} \approx \frac{1}{N} \left[2 \ln(mag) - \ln(N) \right]$$

theoretical sidelobes [dB]

-24.116 average

-12.113 peak for random array

,-13.985, peak for optimized array

Frequency synthesis for continuum sources

Beam shape, 1D slice

Earth rotation and frequency synthesis will greatly reduce the sidelobe peaks