MC.CMC

Outline

- What's different about ngVLA?
- Calibration challenges: pointing
- Calibration challenges: amplitude
- Calibration challenges: phase/delay
- Misc. topics

...indebted to many talks & papers, esp. those by Crystal Brogan, Bryan Butler, Chris Carilli, Barry Clark, Ed Fomalont, Mark Holdaway, Maria Rioja, and the ALMA & KVN teams

What's different about the ngVLA?

- **High frequencies**: 100+ GHz (ALMA Band 3)
 - >= 4x SKA1_Mid
- Wide bandwidths
 - Up to 30 GHz (vs. 8 GHz ALMA, EVLA; 5 GHz SKA1_Mid)
- Long baselines (2x SKA1_Mid) & lots of antennas
- → Huge spatial dynamic range, all the time (as SKA1)
- → More stable antennas?
- → Range of atmosphere & weather across the array
- → High sensitivity

What's different about the ngVLA?

- Following ngVLA memos (Carilli, Clark, Owen, ...) I concentrate on high frequencies & long baselines
 - Focus is on new & different— e.g., self-cal is important but barely mentioned here
- Very few details/numbers too little time, too easy to bog down
- High sensitivity also creates issues
 - High dynamic range imaging: e.g., SKA1_Mid interested in pointing self-cal, wide-area pol'n response
 - Fast mapping: e.g., dealing with pointing errors during on-the-fly mapping

ntellicast.com

Calibration challenges: pointing

- 18m FoV at 100 GHz ~30 arcsec → 3x < VLA 43 GHz
- → Avoid the problem
 - VLA, ALMA, ...
 - wait for good weather
 - is this practical across the southwest?
 - good-weather subarrays?

Calibration challenges: pointing

- → Referenced pointing
 - transfer from lower frequency
 - ...different scan: VLA
 - ...simultaneous: cf. VERA
 - pointing self-cal: SKA1_Mid
 - ...probably not needed
- → Better intrinsic pointing
 - stiff dishes, tiltmeters, optical telescopes, ... (ALMA, NOEMA, ...)

Opacity

- Emission (noise) & absorption (lower signal)
- Varies with time, frequency, and location
- Elevation dependence

- Opacity
 - → Scheduling: cal/src at ~same elevation
 - → Tipping scans (aka sky dips): measure opacity directly
 - → Tsys corrections: track fast changes
 - ALMA Amp.Cal.Device (hot/cold load) measured every 5-15 mins
 - VLA: switched noise diodes

- Flux scale
 - Calibrators are few & highly variable

Quasars: ALMA B3, B7

- Flux scale
 - Calibrators are few & highly variable
 - → a priori calibration: VLBI, many mm instruments
 - Tsys & efficiency measurements
 - sampler corrections: ACCOR
 - → different types of calibrators at different frequencies
 - red giants, asteroids, etc.: ALMA

Calibration challenges: phases (delays)

- Fast phase variations, primarily (but not entirely!) troposphere & water at high frequencies
 - ALMA: PWV changes delay by up to 0.3 mm/s (30 degs @ 90 GHz)
 - Fundamentally delays so solve for those, not phases!
 - Different atmosphere over different sites
 - See discussion on pointing
- Fewer, more variable, and fainter calibrators
- → Avoid the problem: "Go/Nogo"
 - But how often do we have good weather everywhere?
- → Self-cal: but average flux < 50 microJy...

Water Vapor Radiometers

- Measure PWV by looking at water lines
- CARMA, NOEMA: 22 GHz
- ALMA, SMA, CSO-JCMT: 183 GHz
 - Measured @ 1 Hz
 - WVR can make things worse: clouds, ice (<10% of time @

Short Baseline (≈50m)

Longer Baseline (≈300m)

Water Vapor Radiometers

Have to account for other terms as well: e.g., CALC dry term

Fast switching

• 1.44mm PWV, 7 m/s; 1.3 degs., 20s cycle time

Fast switching

- Lovely but...
 - Requires fast moving & settling
 - Spend ½ or more of time calibrating
 - Requires dense grid of calibrators

Figure 3. The histogram of the target-calibrator separation from the ALMA catalogue on 1 January 2014. The probability distribution for the minimum separation of a random position in the sky from the nearest Band 3 calibrator is shown. The median separation is 3.5° and there is a 90% probability of finding a calibrator within 7° of a random target.

Median 3.5degs 90% w/in 7 degs

ESO msg 2014

Fast switching

- Lovely but...
 - Requires fast moving & settling
 - Spend ½ or more of time calibrating
 - Requires dense grid of calibrators
 - → real-time search for calibrators?

Simultaneous calibrator/source observations

- Multiple, steerable receivers: VERA
- Paired antennas
 - Wastes 25-50% of collecting area (and uv-coverage)
 - Or use cheaper calibration antennas
 - Does anyone actually do this regularly?

- Fast phase variation is tropospheric (non-dispersive) delay, so phase goes as frequency
- Solve for phase at low frequency & apply at high
- Fast-switch in frequency, slow-switch in position
- ALMA "band-to-band" transfer for Bands 8-10

 Multiple receivers: Korean VLBI Network (KVN): 3 dishes, 22, 43, 87, 130 GHz, 300-500km (K Q W D)

How important are integer frequency ratios?

 Multiple receivers: Korean VLBI Network (KVN): 3 dishes, 22, 43, 87, 130 GHz, 300-500km (K Q W D)

- Coherence loss vs. flux recovered
- 43→130 GHz phase transfer
- Just freq switching
- Plus source switching (3min)

- Paired high/low freq arrays (Carilli, Owen)
 - ...need to separate dispersive/non-dispersive effects

Other phasing approaches

- Pulse cals: inject tones at the antenna to align subbands & polarizations, and to track electronic delays
 - VLBA does this
- Correct for coherence losses in amplitude when phase can't be fixed
 - OVRO, BIMA, ...
- Correct phases statistically (i.e., deconvolve with PSF smoothed with "average" atmosphere) – Holdaway et al.
 - Does this cover an interesting parameter space?
- Separate observations of dispersive term (cf. VLBA/Reid)

Misc. topics

Polarization & bandpass calibration

- Polarization
 - Still early days
 - GMVA calibration approach seems quite similar to VLA/VLBA
 - Artificially polarized noise source with rotatable signal? (ALMA)
 - Squint will continue to be an issue
- Bandpass
 - Again similar but need very strong source
 - Past arrays have injected broadband signals with known bandpass

Living with bad weather/data

- Antenna-based weighting likely to be more important
- Could imagine subarrays with different calibration schemes depending on local conditions
 - ...either intrinsically different, or solve for subset of antennas in multiple passes
- Fair-weather dishes? Save power in lousy conditions

Lessons from VLBI

- A priori calibration where possible (amplitudes, delays)
- Delays rather than phases: model the physical effects
- Weighting of antennas: L1 and beyond
- Sifting & smoothing of calibration solutions: range of solution, SNR, consistency
- Split solutions into subarrays (i.e., separate solutions for different groups of antennas)

Conclusions

Conclusions

- Can drive array design, but probably not computationally expensive (for post-processing)
 - Exception: pointing & "normal" self-cal
- What do we do about the weather?
- Consider relative importance of highest frequencies
 - Do we trade dishes for stiffness? Fast switching? Multiple receivers? WVRs? Which gives the best benefit/\$?
 - Do we only observe high frequencies under perfect conditions?

NRC-CNRC

