

ngVLA Technical Overview

Mark McKinnon

2nd ngVLA Technical Workshop, Socorro, NM December 8-9, 2015

Outline

- ngVLA Nominal Technical Parameters
- Technical Issues to Consider in Science Use Cases
- Programmatics
- Additional Information

Pointed or Survey Telescope?

- ngVLA is envisioned to be a general purpose, PI-driven, pointed telescope
 - Used much like current JVLA
 - Can be used for occasional, dedicated surveys (e.g. FIRST, NVSS)
- ngVLA is not a dedicated survey instrument that delivers generic data products (e.g. a radio-LSST)
 - Drives telescope design in a very different way (large N, small D)

Nominal Technical Parameters

	$2 \mathrm{GHz}$	10GHz	$30 \mathrm{GHz}$	$80 \mathrm{GHz}$	$100 \mathrm{GHz}$
Field of View FWHM (18m ^a) arcmin	29	5.9	2	0.6	0.51
Aperture Efficiency (%)	65	80	75	40	30
$A_{eff}^{b} \times 10^{4} \text{ m}^{2}$	5.1	6.2	5.9	3.1	2.3
T_{sys}^c K	29	34	45	70	80
$Bandwidth^d GHz$	2	8	20	30	30
Continuum rms ^e 1hour, μ Jy beam ⁻¹	0.93	0.45	0.39	0.96	1.48
Line rms 1hour, 10 km s ⁻¹ , μ Jy beam ⁻¹	221	70	57	100	130
Resolution ^f FWHM milliarcsec	140	28	9.2	3.5	2.8
T_B^g rms continuum 1hr K	14	7	6	15	23
Line^h rms 1hour, 1" taper, 10 km s ⁻¹ , $\mu\mathrm{Jy}$ beam ⁻¹	340	140	240	860	_
T_B^i rms line, 1hour, 1" taper, 10 km s ⁻¹ , K	100	1.8	0.32	0.17	_

^aUnder investigation: antenna diameters from 12m to 25m are being considered.

Carilli et al. 2015, ngVLA memo #5

b300 x 18m antennas with given efficiency.

^cCurrent performance of JVLA below 50GHz. Above 70GHz we assume the T_{sys} =60K value for ALMA at 86GHz, increased by 15% and 25%, respectively, due to increased sky contribution at 2200m.

^dUnder investigation. For much wider bandwidths, system temperatures are likely to be larger.

Technical Issues for Consideration in Science Use Cases

Phase Calibration

- Options and implications (Clark, ngVLA memo #2)
 - Self calibration
 - Too few and too weak sources at high frequency
 - Fast switching (Carilli, ngVLA memo #1)
 - More rigid structure, larger drive motors, enhanced electrical infrastructure, reduced time on source
 - Dedicated reference array (Owen, ngVLA memo #4)
 - Separate antenna design (~100 x 4m); maximizes time on source
 - Paired antennas
 - Identical antennas, with half on source of interest and other half on reference source
 - Water vapor radiometers
 - 183 GHz works well on ALMA; VLA attempts at 22 GHz inconclusive

Array Configuration

- Sensitivity to low surface brightness. Options:
 - Large array of smaller diameter (~12m) antennas
 - Compact array of smaller diameter antennas at the core of the overall array (similar to ALMA)
 - Large single dish (e.g. GBT)
- VLBI implementation. Options:
 - Used in concert with other, existing telescopes
 - ~20% of collecting area, perhaps in groups of antennas, on long baselines
- Fixed or moveable antennas?

Antenna Optical Configuration

Options

- If science priority is high dynamic range imaging at low frequency, optical configuration is likely offset Gregorian
 - Excellent receiver performance (i.e. low Trx) at these frequencies
 - Large number of background sources
 - Tsys dominated by scattering, spillover, sidelobe pick up
 - Mitigate with unblocked aperture
- If science priority is sensitivity at high frequency, optical configuration might be conventional symmetric Cassegrain
 - Tsys dominated by atmosphere and receiver
 - Fewer background sources (dynamic range not a big science driver?)
 - May be difficult to justify additional cost of offset geometry

Receiver Band Definition

- High bandwidth ratio feed (BWR 3:1 7:1)
 - Excellent continuum sensitivity
 - Cover desired frequency range with fewest number of receivers
 - Minimizes operations costs
 - On-antenna performance data appears to be sparse
- But when compared to conventional corrugated horns, high BWR quadridge flared horns (QRFH) tend to have:
 - Higher cross-polarization (by ~10 dB)
 - Freq-dependent beamwidths (lower aperture efficiency at high freq)
 - Higher sidelobes (higher Tsys and RFI susceptibility)
 - Asymmetric beam patterns (adversely impact dynamic range)
- Guidance needed on band definition to capture desired molecular lines in a single band

Programmatics

Project Organization and Work Packages

Partner participation via work package delivery

Cost and Timeline

- Cost
 - Detailed cost estimate of the ngVLA yet to be made
 - Cost will be about XB USD
- Time line (aggressive)
 - Early 2019: Propose ngVLA concept to 2020 Decadal Survey
 - Early/mid 2020s: With Decadal Survey endorsement, seek funding for design and development phase (~3 year duration)
 - Develop construction and operations proposal
 - Mid/late 2020s: Seek construction finding (~10 year duration)

Additional Information

- ngVLA webpage
 - https://science.nrao.edu/futures/ngvla
- ngVLA memo series
 - http://library.nrao.edu/ngvla.shtml
- ngVLA science working groups
 - https://science.nrao.edu/futures/ngvla/science-working-groups
- ngVLA science meeting at 2016 AAS in Kissimmee, FL
 - https://science.nrao.edu/science/meetings/2016/227th-aasmeeting/ngvla

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

