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Research aims at VU University Amsterdam 
• Methods for high-accuracy fiber-optic time and frequency (T&F) 

distribution 
• Key focus: compatibility with existing data/telecom infrastructure 

and existing TFT protocols 
• Long-term objective: a terrestrial infrastructure for telecom, T&F 

distribution, and (strongly improved) positioning 

See also NRAO special  
colloquium this Thursday 



Fiber-optic time and frequency 
transfer for radio astronomy/VLBI 
Past:  Stand-alone H-masers, telescope data recorded on 
 tape/harddisks, shipped to correlator 
 

Present: Stand-alone H-masers, telescope data transferred to 
 correlator through fiber-optic telecom network 
 

Future: Both T&F reference and telescope data transferred 
 through fiber-optic telecom network 

• Lower cost 
• Superior time sync (<< 1 ns)  
• Important to many stakeholders (GPS back-up for electricity 

grids, telecom networks, electronic financial transactions) 

 



Fiber-optic frequency transfer 
Optical frequency transfer (1.5 µm / 2×1014 Hz): 
• Send ultrastable continous-wave (CW) ‘clock laser’ down a long 

fiber-optic link  (hundreds to thousands of kilometers) 
• Remote end application: lock optical frequency comb laser to CW 

laser 
 
 
 

 
 
 
 

• Advantage: highest stability (ADEV 10-15 @1s) 
• Disadvantage: frequency comb price comparable to active H-maser 
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Fiber-optic frequency transfer 
RF/Microwave frequency transfer (10 MHz – 10 GHz) 
• Modulate link laser (e.g. AM) with reference clock signal 
• Remote end: simply detect modulation with photoreceiver            

(no other laser needed) 
 
 
 
 
 
 
 

• Need to deal with optical path length changes 
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Optical path length variations 
• Acoustic and (soil) 

temperature variations change 
optical path length ⇒        
‘noisy’ Doppler shift 
 

• Effects investigated* using      
2× 300 km fiber link between 
VU Amsterdam and RU 
Groningen 

• Stability limit > 10-14 

Appl. Opt. 54, 728 (2015) 

H-maser 
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Noise detection 
+compensation 

Optical fiber 
(>> 100 km) 

1.5 µm 
clock laser 
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Partial 
reflector 

roundtrip 
contains     
2× noise! 

Compensation of frequency fluctuations due to length fluctuations*: 

PLL 

*L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19, 1777(1994) 
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Optical path length stabilization 



A few historical results 
• Model of frequency transfer through compensated optical fiber (NIST)       

P. A. Williams et al., J. Opt. Soc. Am. B 25, 1284 (2008) 
• Compensated fiber-optic link of 1840 km length (PTB Germany):             

S. Droste et al., Phys. Rev. Lett. 111, 110801 (2013) 
• MW-modulated optical carrier over 86 

km (LPL and Observatoire Paris):           
O. Lopez et al., Eur. Phys. J. D 48, 35 (2008) 
 
 
 
 
 
 
 
 
 

• T&F transfer through 540 km telecom 
link with live Internet data traffic (LPL & 
Obs. Paris): O. Lopez, Opt. Express 20, 
23518 (2012) 

9.15 GHz AM 
15 Hz BW 



Fiber-optic time transfer 
Synchronization: transmission delay must be measured 

t’ = t + ? t 
A B 

Optical fiber Tx Rx 

d (unknown) 

1. Determine round-trip delay using clock A 
 

2. Assume identical delays A-B and B-A and compute OWD = RTD/2 
 

3. Send correction to clock B taking into account one-way delay 



Differential delay 

Key assumption in both compensated frequency and time links: 
the optical delays A-B and B-A are identical 
 
This can be violated by: 
• Path length variations faster than round-trip time 
• Differential delay due to separate physical paths of unequal 

length and/or sensitivity to environmental changes 
• Chromatic dispersion (CD) 
• Polarization mode dispersion (PMD) (every fiber is a randomly 

varying birefringent medium: propagation delay depends on 
polarization state of light) 

• Nonlinear (power-dependent) effects (often negligible) 



A few examples 
• Chromatic dispersion 0-17 ps/(nm km), depending on fiber 

type 
• Wavelengths 20 nm apart: 

– Differential delay 2 ns/100 km ⇒ timing offset! 
– Probably leads to uncompensated frequency noise at ∼10-15 level 

• PMD is known to cause timing drift in older legacy fiber: 

Graph by LPL and Observatoire Paris; see 
O. Lopez et al., Eur. Phys. J. D 48, 35 (2008) 

Without  
polarization scrambler 

With 
polarization scrambler 

Solutions: 
- Choose nearby wavelengths (∼ 1 nm) 
- Eliminate dispersion by calibration* 
* N. Sotiropoulos et al., Opt. Express 21, 32643 (2013) 



delay 

g: original signal 
(pseudo-random bit sequence, PRBS) 

Fiber-optic time transfer methods 
• Measuring delays: exchange PPS signal (1 measurement/s) 
• Better: use 1-10 Gb/s data (1010 measurements/s possible) 
Different methods: 
• Cross-correlation of input and roundtrip data  (VU, TU/e) 

f : delayed (round-trip) signal 

Delay of 75 km fiber: 4 ps uncertainty [Sotiropoulos et al., Opt. Express (2013)] 
Resolution  <100 fs possible (both in optical and electrical domain!) 



Atomic 
clock 

Fiber-optic time transfer methods 
• Measuring delays: exchange PPS signal (1 measurement/s) 
• Better: use 1-10 Gb/s data (1010 measurements/s possible) 
Different methods: 
• Cross-correlation of input and roundtrip data  (VU, TU/e) 
• White Rabbit Ethernet (CERN, based on IEEE Precision Time Protocol) 

• Time, frequency, and   
1 Gb/s data in one 

• 1 PPS, 10 – 125 MHz 
• Designed for 1 ns 

timing over distances 
<10 km (LHC, CERN) 

• Commercially available 



White Rabbit 
• Communication generally over two different lambdas 
• Use Wavelength Division Multiplexing 
• Choose your own wavelength: just swap SFP transceiver 

 
 
 
 
 
 
 

• Pro: T&F connection can be a cascade of links with different 
wavelength pairs (using optical-electrical-optical converters) 

• Con: cascade becomes noisy as each O-E-O conversion adds jitter 
• For high stability we prefer long spans with optical amplifiers 



Extending the range of WR 

Link VSL Delft- 
NIKHEF Amsterdam 
(2×137 km) 

300 km 



1490 nm 

1470 nm 

1490 nm 

1470 nm 

1470 nm 1470 nm 

1490 nm 1490 nm 

Cs 
clock 

UTC(VSL) 

1 PPS 

10 MHz 

10 MHz 

1 PPS 

2×137 km 

10 MHz 1 PPS 

Delay asymmetry (characterized for each component) 

Extending the range of WR 



Optical amplifiers 

• Need optical amplifiers both inside C-band (EDFAs) and 
outside C-band (SOAs) 

1300 1400 1500 1600 
nm 

SOA 
EDFA 

• EDFAs are known to work well for ultrastable fiber-optic 
T&F transfer (NIST, PTB, LPL/Observatoire de Paris…) 

• SOAs offer a much wider wavelength range. Do they 
work as well? 



5 km uncompensated 

5 km compensated, no amp 

5 km compensated, SOA 
5 km compensated, EDFA 

Comparison EDFA vs SOA 
• Use Hz laser and spooled fiber (5, 25, 100 km) 
• SOA vs EDFA: small differences, only visible with frequency 

counters in high-precision mode 
• Rigorous (quantitative) analysis of noise in system 

– SOAs (ASE, current noise) 
– EDFAs (ASE) 
– Counters (response*) 

*E. Rubiola,  
Rev. Sci. Instr. 76, 054703 (2005) 
 
S. T . Dawkins et al., IEEE Trans.  
Ultrason. Ferroelectr. Freq. Control 
54, 918 (2007) 



Results 2×137 km roundtrip 

• Time offset 5 ns (within current uncertainty of ±8 ns due to dispersion) * 
– Comparable with state-of-the-art GPS timing 

• Uncertainty currently improved towards ±0.1 ns        (0.1 ns × c ≈ 3 cm ) 
• In principle, few picoseconds uncertainty is possible                  

(demonstrated using 75 km fiber spools by VU, TU Eindhoven and SURFnet**) 
• Work in progress: Tjeerd Pinkert (VU), Henk Peek, Peter Jansweijer (NIKHEF) 

**N. Sotiropoulos, C.M. Okonkwo, R. Nuijts, H. de Waardt, JK  
Optics Express 21, 32643 (2013) 

Origin of offset: TBD 

**E. Dierikx et al.  
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 

Excess jitter due to meaurement system 
(RMS jitter WR switch:  9 ps) 



Timing for VLBI 

• ASTERICS project 
(EUH2020, 15 M€) 

• Coordinated by 
ASTRON (M. Garett) 

• Subtask: VLBI timing 
VU, JIVE, ASTRON, 
NIKHEF, SURFnet, 
University of 
Granada (Spain) 

• Improve WR and 
demonstrate… 

Current WR 

Required clock stability 

Rogers & Moran, IEEE Trans.  
Instr. Meas. IM-30, 283 (1981) 

Improved WR(?) 

Hi-quality LO 

Requires HW temperature 
monitoring and active 

compensation (software) 
- work in progress* 

*G. Gong et al. (LHAASO, 2014) 
DOI: 10.1109/RTC.2014.7097462 

ADEV Slave-Master 



Jitter forecast 
• Microsemi 1000C 

oscillator 
• Oscilloquartz BVA 
• Wenzel Associates 
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10% SNR degradation  
(120 GHz system freq.) 

1% SNR degradation  
(120 GHz system freq.) 

Economical solution (if it works): 
WR equipment  < $1k - $3k 
LO  < $10k  



Implementation of WR T&F distribution for 
radio astronomy in live telecom network 
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Transport through DWDM in NM? 
• Technologically feasible 
• Is there an 

owner/operator of 
‘interstate’ DWDM?    
(there has got to be!) 

• Can the concept of T&F 
distribution/GPS-backup 
be escalated to an ‘issue 
of national importance’? 

• Timing also helps 4G 
operators to upgrade to 
4G LTE-TDD! 



Can timing help phase calibration? 

• Reduce time window for fringe search? 
 

• Facilitate tropospherical phase drift retrieval 
algorithms? 



Contributions by (among others) 

Henk Peek (Nikhef) 

Tjeerd Pinkert (VU) 

Chantal van Tour  
(TUD/VU) 

Erik Dierikx 
            (VSL) 

Paul Boven 
(JIVE) 

Rob Smets 
(SURFnet) 

Kjeld Eikema (VU) … and collaborators at: 

Peter Jansweijer 
(Nikhef) 



Thanks!     Questions:   
j.c.j.koelemeij@vu.nl 
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