Long-haul implementation of White Rabbit Ethernet for fiber-optic synchronization of VLBI stations

Jeroen Koelemeij

2nd ngVLA workshop NRAO Socorro, NM, USA December 9, 2015

Research aims at VU University Amsterdam

- Methods for high-accuracy fiber-optic time and frequency (T&F)
 distribution
- Key focus: compatibility with existing data/telecom infrastructure and existing TFT protocols
- Long-term objective: a terrestrial infrastructure for telecom, T&F distribution, and (strongly improved) positioning

Fiber-optic time and frequency transfer for radio astronomy/VLBI

Past: Stand-alone H-masers, telescope data recorded on

tape/harddisks, shipped to correlator

Present: Stand-alone H-masers, telescope data transferred to

correlator through fiber-optic telecom network

Future: Both T&F reference and telescope data transferred through fiber-optic telecom network

- Lower cost
- Superior time sync (<< 1 ns)
- Important to many stakeholders (GPS back-up for electricity grids, telecom networks, electronic financial transactions)

Fiber-optic frequency transfer

Optical frequency transfer (1.5 μ m / 2×10¹⁴ Hz):

 Send ultrastable continous-wave (CW) 'clock laser' down a long fiber-optic link (hundreds to thousands of kilometers)

Remote end application: lock optical frequency comb laser to CW

- Advantage: highest stability (ADEV 10⁻¹⁵ @1s)
- Disadvantage: frequency comb price comparable to active H-maser

Fiber-optic frequency transfer

RF/Microwave frequency transfer (10 MHz – 10 GHz)

- Modulate link laser (e.g. AM) with reference clock signal
- Remote end: simply detect modulation with photoreceiver (no other laser needed)

Need to deal with optical path length changes

Optical path length variations

- Acoustic and (soil)
 temperature variations cl
 optical path length ⇒
 'noisy' Doppler shift
- Effects investigated* usin a 2× 300 km fiber link betwo
 VU Amsterdam and RU
 Groningen
- Stability limit > 10⁻¹⁴

to Groningen

from Groningen

Amsterdam

ch.22

to Amsterdam

~10 km

τ (days)

Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-divisionmultiplexing fiber-optic links

Appl. Opt. **54**, 728 (20)

T. J. Pinkert, 1 O. Böll, 2 L. Willmann, 2 G. S. M. Jansen, 1 E. A. Dijck, 2 B. G. H. M. Groeneveld, 2 R. Smets, 3 F. C. Bosveld, 4 W. Ubachs, 1 K. Jungmann, 2 K. S. E. Eikema, 1 and J. C. J. Koelemeij 1,*

Optical path length stabilization

Compensation of frequency fluctuations due to length fluctuations*:

A few historical results

Model of frequency transfer through compensated optical fiber (NIST)
 P. A. Williams et al., J. Opt. Soc. Am. B 25, 1284 (2008)

University

Aubervilliers

- Compensated fiber-optic link of 1840 km length (PTB Germany):
 S. Droste et al., Phys. Rev. Lett. 111, 110801 (2013)
- MW-modulated optical carrier over 86 km (LPL and Observatoire Paris):

O. Lopez et al., Eur. Phys. J. D 48, 35 (2008)

 T&F transfer through 540 km telecom link with live Internet data traffic (LPL & Obs. Paris): O. Lopez, Opt. Express 20, 23518 (2012)

Paris

l'Artaud

Fiber-optic time transfer

Synchronization: transmission delay must be measured

- 1. Determine round-trip delay using clock A
- 2. Assume identical delays A-B and B-A and compute OWD = RTD/2
 - 3. Send correction to clock B taking into account one-way delay

Differential delay

Key assumption in **both** compensated **frequency** and **time** links: **the optical delays A-B and B-A are identical**

This can be violated by:

- Path length variations faster than round-trip time
- Differential delay due to separate physical paths of unequal length and/or sensitivity to environmental changes
- Chromatic dispersion (CD)
- Polarization mode dispersion (PMD) (every fiber is a randomly varying birefringent medium: propagation delay depends on polarization state of light)
- Nonlinear (power-dependent) effects (often negligible)

A few example

Solutions:

- Choose nearby wavelengths (~ 1 nm)
- Eliminate dispersion by calibration*
- Chromatic dispersion 0type
- * N. Sotiropoulos *et al.*, *Opt. Express* **21**, 32643 (2013)

- Wavelengths 20 nm apart:
 - Differential delay 2 ns/100 km \Rightarrow timing offset!
 - Probably leads to uncompensated frequency noise at $\sim 10^{-15}$ level
- PMD is known to cause timing drift in older legacy fiber:

Graph by LPL and Observatoire Paris; see O. Lopez et al., Eur. Phys. J. D 48, 35 (2008)

Fiber-optic time transfer methods

- Measuring delays: exchange PPS signal (1 measurement/s)
- Better: use 1-10 Gb/s data (10¹⁰ measurements/s possible)

Different methods:

Cross-correlation of input and roundtrip data (VU, TU/e)

Delay of 75 km fiber: 4 ps uncertainty [Sotiropoulos *et al.*, Opt. Express (2013)]

Resolution <100 fs possible (both in optical and electrical domain!)

Fiber-optic time transfer methods

- Measuring delays: exchange PPS signal (1 measurement/s)
- Better: use 1-10 Gb/s data (10¹⁰ measurements/s possible)

Different methods:

- Cross-correlation of input and roundtrip data (VU, TU/e)
- White Rabbit Ethernet (CERN, based on IEEE Precision Time Protocol)

- Time, frequency, and 1 Gb/s data in one
- 1 PPS, 10 125 MHz
- Designed for 1 ns timing over distances
 <10 km (LHC, CERN)
- Commercially available

White Rabbit

- Communication generally over two different lambdas
- Use Wavelength Division Multiplexing
- Choose your own wavelength: just swap SFP transceiver

- Pro: T&F connection can be a cascade of links with different wavelength pairs (using optical-electrical-optical converters)
- Con: cascade becomes noisy as each O-E-O conversion adds jitter
- For high stability we prefer long spans with optical amplifiers

Extending the range of WR

300 km

Extending the range of WR

Optical amplifiers

 Need optical amplifiers both inside C-band (EDFAs) and outside C-band (SOAs)

- EDFAs are known to work well for ultrastable fiber-optic
 T&F transfer (NIST, PTB, LPL/Observatoire de Paris...)
- SOAs offer a much wider wavelength range. Do they work as well?

Comparison EDFA vs SOA

- Use Hz laser and spooled fiber (5, 25, 100 km)
- SOA vs EDFA: small differences, only visible with frequency counters in high-precision mode
- Rigorous (quantitative) analysis of noise in system
 - SOAs (ASE, current noise)
 - EDFAs (ASE)
 - Counters (response*)

Rev. Sci. Instr. 76, 054703 (2005)

S. T. Dawkins et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control **54,** 918 (2007)

*E. Rubiola,

Results 2×137 km roundtrip

- Time offset 5 ns (within current uncertainty of ±8 ns due to dispersion) *
 - Comparable with state-of-the-art GPS timing
- Uncertainty currently improved towards ± 0.1 ns (0.1 ns \times $c \approx$ 3 cm)
- In principle, few picoseconds uncertainty is possible
 (demonstrated using 75 km fiber spools by VU, TU Eindhoven and SURFnet**)
- Work in progress: Tjeerd Pinkert (VU), Henk Peek, Peter Jansweijer (NIKHEF)

1.0E-10 Timing for VLBI **ADEV Slave-Master** MDEV Slave 1.0E-11 MDEV Master MDEV Slave-Master Required clock stability 1.0E-12 1.0E-13 Rogers & Moran, IE Instr. Meas. IM-30. 1.0E-14 10-11 **Current WR** 1.0E-15 10-12 $\langle \sigma_y^2 \rangle^{1/2}$ 1.0E-16 CLOUDY MOIST 1.0E + 001.0E + 011.0E+05 1.0E + 021.0E + 031.0E + 04RUBIDIUM di-qual Coordinated by CESIUM ASTRON (M. Garett)

Fig. 1. Allan standard deviation circles are measured Allan standar observed during clear weather (Westford, MA) and the Nat (Greenbank, WV) using H-maser limits of the Allan standard devia

10-15

10-1

CLEAR DRY

Improved WR(?) H MASER

conditions, with no allowance for the ionosphere instability.

Requires HW temperature monitoring and active compensation (software) work in progress*

*G. Gong et al. (LHAASO, 2014)

DOI: 10.1109/RTC.2014.7097462

Subtask: VLBI timing

VU, JIVE, ASTRON,

NIKHEF, SURFnet,

Granada (Spain)

Improve WR and

demonstrate...

University of

Jitter forecast

- Microsemi 1000C oscillator
- Oscilloquartz BVA
- Wenzel Associates

Implementation of WR T&F distribution for radio astronomy in live telecom network

Transport through DWDM in NM?

- Technologically feasible
- Is there an owner/operator of 'interstate' DWDM? (there has got to be!)
- Can the concept of T&F distribution/GPS-backup be escalated to an 'issue of national importance'?
- Timing also helps 4G operators to upgrade to 4G LTE-TDD!

Can timing help phase calibration?

Reduce time window for fringe search?

 Facilitate tropospherical phase drift retrieval algorithms?

Contributions by (among others)

Thanks!

Questions: j.c.j.koelemeij@vu.nl