Data Digitization & Transmission

Session Moderator: Chris Langley

Atacama Large Millimeter/submillimeter Array
Karl G. Jansky Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Data Digitization & Transmission Overview and Issues

Jim Jackson

Atacama Large Millimeter/submillimeter Array
Karl G. Jansky Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Session Considerations

- Requirements and parameter space for digitization and data transmission systems
- Scalability, and limitations, of current approaches
- Technical risks and issues
- Emerging technologies and opportunities
- Candidate architectures for ngVLA based on these discussions

Session Topics

- Jim Jackson: "Overview & current NRAO systems"
- Larry D'Addario: "Signal Organization for Long-distance Transfer with Wide-band Front Ends"
- Ron Beresford: "Radio Over Glass, Analog or Digital? Progress from Australia"
- Matt Morgan: "Integrated Digitization with Unformatted Serial Data Transfer"
- Frank Murden: "Analog Devices Ultra-wideband ADC Technology Roadmap"

NGVLA Current Thinking

- Antennas
 - -250+
 - 15 to 25m diameter
- Processed bandwidth
 - Up to 50 GHz
- Array configurations
 - Baseline plan is ~300km diameter circle centered on JVLA
 - Discussions of longer baselines to encompass all of NM, western TX, eastern AZ, southern CO, and northern MX
- Operating cost needs to be comparable to JVLA

NGVLA Proposed Frequency Coverage

- Three major bands
 - I to 8 GHz
 - Narrower BW, but likely greater bit depth than other bands
 - Key driver on physical size of receiver package
 - 8 to 50 GHz
 - May need to be broken into multiple bands
 - Performance of LNA's could require multiple receivers
 - Availability of wideband digitizers will affect LO/IF design
 - 70 to 115 GHz
 - Availability of wideband digitizers will affect LO/IF design

Current NRAO situation

- JVLA/ALMA
 - RF digitized in I to 2 GHz chunks
 - In antenna digitization
 - 4 Gsps / 3 bits (JVLA/ALMA)
 - » JVLA ADC/Hittite HMC5831, Teledyne RAD004
 - » ALMA custom device from Bordeaux
 - 2 Gsps / 8-Bits (EVLA)
 - » E2VTS83102G0B
 - Data Transmission
 - 12 In-house designed 10 Gbps psuedo-SONET links / antenna
 - 10+ year old design
 - Could be modernized and modified to fit into commercial networks

Current NRAO situation

- VLBA
 - RF digitized in 512 MHz chunks
 - RF over coax to station building
 - Digitized in RDBE
 - I Gsps / 8-Bits (EVLA)
 - » E2V AT84AD001B
 - Digital down-conversion for recording
 - Data transmission
 - Full bandwidth
 - Hard disk recorders (Mark 5B/C)
 - Local 10 Gig E interface from RDBE to recorders
 - Lower bandwidth on commercial networks at some stations

Current NRAO situation

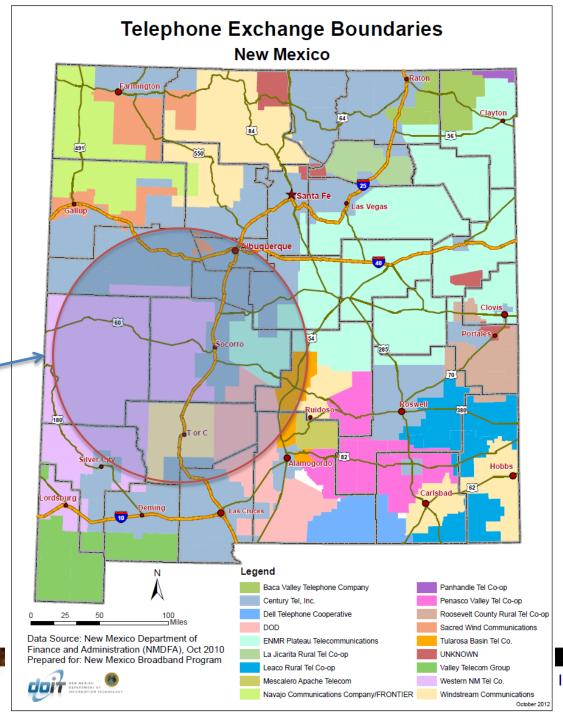
- Smaller systems
 - Using Ethernet on smaller systems
 - VLITE/LOBO 10 Gb Ethernet to correlator
 - VLA antennas to control building
 - Spare fiber pair
 - Other projects & VLBA real time testing
 - I Gsps or less / 8-bits
 - VLBA station to PVDSOC via internet

Functional Requirements

- Analog bandwidth, bit depth and sampling rate of digitizers
 - Bandwidth dependent on science requirements and maximum possible
 BW of receivers
 - Bit depth depends on predicted RFI environment for life of system
 - More crowded sky, new satcom bands
 - WiFi / internet systems (satellites, balloons, cellular, etc)
 - Vehicle radars
 - Future things we haven't even thought of yet!
 - High bit depth = high data rates or need for local data reduction
 - Where is industry heading?
- Analog vs. digital transmission or a combination of both
- Signal organization for long distance transfer of wideband signals

Functional Requirements

- Transmission medium:
 - Owned fiber,
 - Leased dark fiber,
 - Commercial network bandwidth
 - Probably will require combination of all of the above!
- Integrated electronics design considerations
 - LO/IF, ADC, DTS in small RFI tight, enclosure(s)
 - Easily swapped for replacement
 - High reliability
 - Good stability with minimum heating / cooling requirements
 - Potentially cheap enough to be non-repairable, throw-away items


Fiber Constraints / Assumptions

- Due to the expected scale of the array (300km+), may have a mixed fiber optic system
 - NRAO owned fiber (array center, last mile), leased fiber (where available), and leased bandwidth on long hauls
- Leased bandwidth introduces issues with timestamping of data
 - Systems needs to deal with packets arriving out of order and provide for the padding of lost packets
- For RF over fiber
 - Cannot assume that all fiber is buried or thermally stabilized.
 - May need to leverage existing utility easements from telecom and rural electric coops
- May have more than one solution in the proposed architecture, with different approaches for the center of the array vs. the extents.

Interaction with multiple telecom operators is expected...

r=150km

Trends & Opportunities

- Full RF bandwidth analog over fiber would eliminate the need for reference distribution to the antenna
 - Analog transceivers are approaching bandwidths of 100GHz.
 - Unclear if there is sufficient total power to remain linear while preserving SNR
 - Creates new concerns, such as the dispersion in velocity, jitter in the transmitter, etc
 - Still need to monitor the optical length of the fiber system to maintain phase coherence
- Digital systems
 - 10 Gb Ethernet / Infiniband / SONET now commodity products
 - 40 & 100 Gb Ethernet & Infiniband becoming available but \$\$\$\$
 - 400 Gb or Terabit Ethernet being thought about!

Desirable Outcomes from this Session:

- A better understanding of:
 - The requirements and parameter space for digitization and data transmission systems
 - Limitations and scalability of current approaches
 - Technical risks and issues to be addressed
 - Emerging technologies that may provide construction and/or operations cost savings, while meeting performance specifications
 - Possible architectures for ngVLA

Questions?

