ngVLA Workshop Signal organization for long-distance transfer with wide-band front ends

> Larry D'Addario 2015 December 9

# Outline

- This is a short talk, giving a high-level, somewhat tutorial view.
- Illustrates principles and methodology, not final choices
- Topics:
  - Top-level assumed requirements
  - Partitioning into front-end bands
  - Digitization methods: direct vs. downconverted
  - Instantaneous bandwidth vs. frequency coverage
  - Quantization (bits per sample): dynamic range requirement
  - A strawman scheme

## **Assumed Requirements**

- Cover the range 1.2 to 116 GHz continuously, except for ~50 GHz to ~70 GHz (oxygen absorption).
- 2. To control cost, minimize the number of feed+LNA assemblies.
- 3. [Cool as much as possible of the feed+LNA assemblies to ~20K using a single cryocooler.]
- 4. Consistent with the above, obtain the best possible  $A_e/T_{sys}$  at all frequencies.

Noise temperature at zenith from sea level due to absorption by atmospheric gasses



## **Band Partitioning**



## **Digitization Schemes**

- Directly at RF (popular when feasible)
  - Only one LO needed (sampling clock)
  - Digitized bandwidth = (sampling rate)/2
  - Nyquist zone n > 1 possible only when bandwidth ratio < (n + 1)/n.
  - Precludes phase switching
- Single-sideband down-conversion
  - Very messy when RF bandwidth ratio > 1
  - May require multiple conversion stages
  - Two (or more) LOs needed
  - Digitized bandwidth = (sampling rate)/2
- Double-sideband down-conversion to baseband
  - Can usually be done in one stage
  - Two LOs needed.
  - Requires two ADCs (I and Q)
  - Digitized bandwidth = sampling rate.

## Direct Digitization (no down-conversion)



2015 December 9

Signal Organization

## Single Sideband Down-Conversion



## Double Sideband (IQ) Down-Conversion



#### How much *instantaneous* bandwidth?

- The maximum instantaneous bandwidth is that of the front end (feed/LNA assembly).
- The maximum bandwidth per digitized channel is set by ADC technology. Multiple channels are possible, but that increases complexity and cost.
- Cost of signal transmission and signal processing (correlation) are proportional to *total* instantaneous bandwidth (all channels)
- What is actually needed for science goals?
  - Do we need to process the full bandwidth of each front end (up to 46 GHz) all at once?
  - What science is lost if instantaneous bandwidth is limited to 10 GHz, but tunable to anywhere in the band?
  - How about 5 GHz instantaneous bandwidth? 2.5 GHz?
- Large processed bandwidth implies coarse spectral resolution
  - Otherwise the correlator output rate is too high

## **Proposed Arrangement**

- Band A
  - 1.2 7.2 GHz, 6.0:1, 6.0 GHz useful bandwidth
  - Direct digitization at 16 GHz sampling rate (0 8 GHz Nyquist)
  - Single channel
- Band B
  - 7.0 49.0 GHz, 7.0:1, 42.0 GHz range
  - IQ downconverter, tunable over RF range, 0 7.2 GHz useful IF
  - Digitize each IF at 16 GHz sampling rate (0 8 GHz Nyquist)
  - Instantaneous bandwidth 14.4 GHz (USB + LSB)
- Band C
  - 70 116 GHz, 1.66:1, 46 GHz range
  - IQ downconverter, tunable over RF range, 0 7.2 GHz useful IF
  - Digitize each IF at 16 GHz sampling rate (0 8 GHz Nyquist)
  - Instantaneous bandwidth 14.4 GHz (USB + LSB)

All digitizers and all channels identical at 16 GSa/s, regardless of band. Correlator for 16 GHz bandwidth needed; half unused for band A.

## Proposed Arrangement (each polarization)



## Dynamic Range, or how many bits?

| f1  | f2  | sqrt(f1*f2) | Tsys | kТВ       | Ae (OdBi)      | Pi(10km)  | Pi(1000km) |
|-----|-----|-------------|------|-----------|----------------|-----------|------------|
| GHz | GHz | GHz         | К    | W         | m <sup>2</sup> | W         | W          |
| 1.2 | 7.2 | 2.9394      | 12   | 9.936E-13 | 8.278E-04      | 3.017E+00 | 3.017E+04  |
| 7   | 21  | 12.1244     | 15   | 2.981E-12 | 4.865E-05      | 1.540E+02 | 1.540E+06  |
| 35  | 49  | 41.4126     | 30   | 5.962E-12 | 4.170E-06      | 3.593E+03 | 3.593E+07  |
| 70  | 84  | 76.6812     | 40   | 7.949E-12 | 1.216E-06      | 1.642E+04 | 1.642E+08  |
| 100 | 116 | 107.7033    | 50   | 9.936E-12 | 6.165E-07      | 4.050E+04 | 4.050E+08  |

+3dB

Pi is the EIRP needed at the given distance to produce 3 dB increase in total power over the system noise.

**Conclusion:** 3 to 5 bits of quantization are sufficient for all ngVLA bands.

## **Digitizers: Current and Future**

| Mfgr       | PN        | quant. | fs, max | BW  | ENOB | @ fs | Р     | Notes                |
|------------|-----------|--------|---------|-----|------|------|-------|----------------------|
|            |           | bits   | GSa/s   | GHz | bits | GHz  | W     |                      |
| U Calgary  |           | 4      | 10      | NS  | 3.84 | 10   | 0.104 | IEEE VLSI Syst, 2014 |
| Adsantek   | ASNT7121  | 4      | 15      | 20  | 3.23 | 7.8  | 2.8   |                      |
| Analog Dev | HMCAD5831 | 3      | 26      | 20  | 2.9  | 20   | 4.2   | was Hittite          |
| Micram     | ADC30     | 6      | 30      | 20  | NS   | NS   | NS    | 1 page DS only       |

## In 2022...

- Will industry produce a 4b 20 GSa/s digitizer with good performance?
  - -- What is the market for such a thing?
- If not, it is entirely reasonable for the radio astronomy community to develop a custom device. See U of Calgary paper.
  - Y. Xu, L. Belostotski and J.W. Haslett, "A 65nm CMOS 10GS/s 4-bit Background-Calibrated Non-Interleaved Flash ADC For Radio Astronomy," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 22, no. 11, pp. 2316-2325, November 2014.

## End

Happy Birthday



