Post-processing Algorithmic Challenges

NG-VLA Technical Workshop , Socorro, Dec. 8^{th} 2015

S. Bhatnagar NRAO

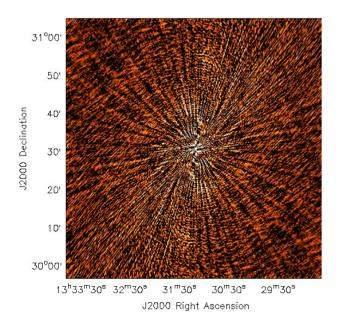
Current Challenges

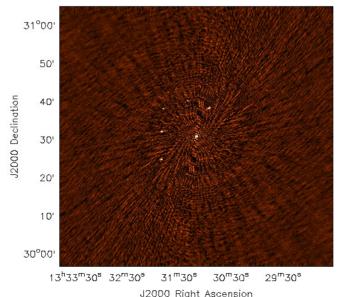
 Current telescopes that provide useful experience for the frequency range of NG-VLA: SKA1, EVLA (1 – 50 GHz) and ALMA (100s of GHz)

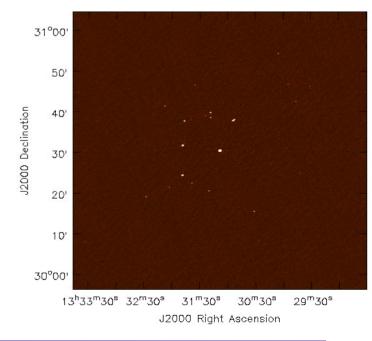
- Unique to NGVLA
 - Higher sensitivity
 - Wider-band, higher-N, longer-B
 - Unexplored frequency range

Imaging: Basic parameters

- Frequency range: 1(?) 100 GHz (EVLA: 1 50 GHz)
- Imaging dynamic range: $10^{3-4(7?)}$ (EVLA: few x 10^6 : 1)
- FoV: 10s arcmin 10s arcsec
- Mosaic imaging
- Resolution: 10^{-{1-3}} arcsec
- Imaging of resolved sources
- NG-VLA is in-between EVLA and ALMA
 - Current Sc. Cases: > 10 GHz, DR < 10000:1
 - For 1 10 GHz range, capable of DR > 10x EVLA
- Computing, memory footprint:
 - Images: 10x larger (100s Kilo pixels on a side)
 - Data volume: 3 5 orders of magnitude larger than EVLA


Current Challenges


- Summary of current challenges/R&D
 - Freq. Dependence of sky brightness distribution
 - Effect stronger of NGVLA (thermal emission)
 - Wide-band Wide-field imaging
 - Effects of WB PB, Pointing Errors, W-Term
 - Wide-field wide-band polarimetric mapping
 - Corrections for in-beam polarization (WB)
 - Faraday Rotation Synthesis
 - Computing load, Memory footprint, use of heterogeneous-HPC
 - Non-isoplanatic atmospheric effects at high frequencies

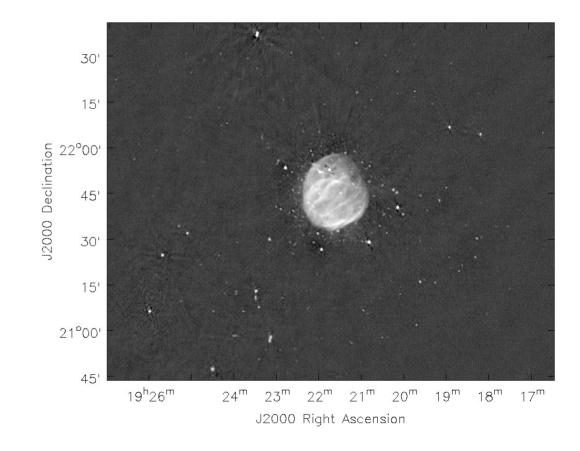


Wide-band Effects

- Wider-band observations: 10—20 GHz across 1(?) 100 GHz
 - Affects all continuum imaging: wide-field and narrow-field
 - Spectral Index effects limits DR to few x 1000:1
 - WB imaging of extended emission requires MS and MT reconstruction: NGVLA memory footprint is prohibitive

Wide-band Effects

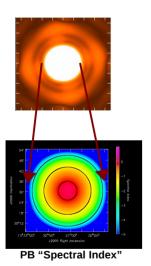
- NG-VLA: Spectral variations stronger/complex (non-thermal + thermal emission)
 - Better techniques to model spectral variations
 - Better techniques to model spatial variations
 - Current tests up to 4 Taylor Terms for simple fields
 - Model spectral variations as a polynomial in frequency
 - Can become numerically unstable for large number of terms.
- Current implementations proven to be numerically advantageous but has high memory footprint and computing load that is difficult to parallelize
 - Possible alternate approaches (component based)

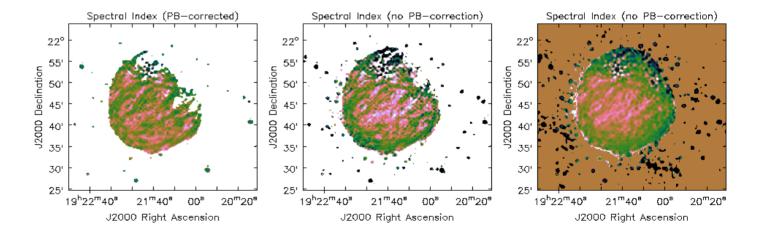

Wide-field Effects: W-Term

Continuum sensitivity pattern spreads FoV to 2x – 3x PB

No. of facets due to W-Term

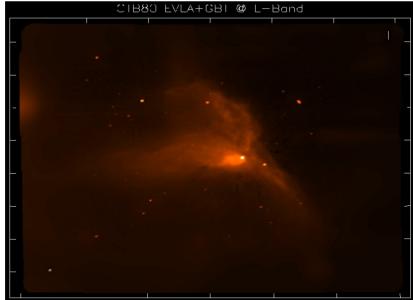
GHz	EVLA	NGVLA
1	15	400
10	1.5	40
50	0.3	8
100	-	4


 Benefit from developments for EVLA and other low frequency telescopes



Wide-field Effects

- Frequency dependence of PB
 - DR limits: few x 1000:1
 - Is idealized model (scaling with freq) sufficient for NGVLA?

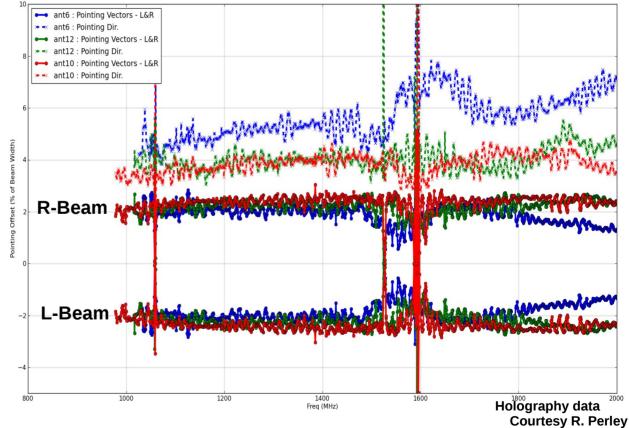


Wide-field Effects

Wide-band continuum mosaic imaging

PB frequency dependence Spreads across the FoV

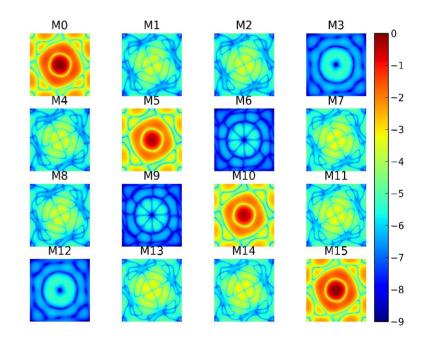
- 100-pointing EVLA mosaic
- Requires combining WB single dish data to map spectral index across the field
 - A work in progress...



Wide-field Effects

Pointing errors: E.g., squint: ~5.6% of PB (EVLA)

Varies across the band. Does it matter? Limits Stokes-I DR ~10000:1

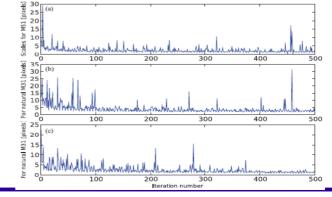

Analysis: Jagannathan

Full pol. Imaging: In-beam effects

$$V_{ij}^{Obs} = [J_i \otimes J_j^*].[V_{ij}^o] = [M_{ij}].[V_{ij}^o]$$

$$\begin{vmatrix} V_{pp}^{Obs} \\ V_{pq}^{Obs} \\ V_{qp}^{Obs} \\ V_{qq}^{Obs} \end{vmatrix} = \begin{vmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{vmatrix} \cdot \begin{vmatrix} V_{pp}^{o} \\ V_{pq}^{o} \\ V_{qp}^{o} \\ V_{qq}^{o} \end{vmatrix}$$

Limits fidelity: strong
 effect at < 20-25% PB-level



(Jagannathan, PhD Thesis)

- Robust pipelines!
 - Needs systemic move away from processing "by hand"
 - Seamless HPC
 - Condense information for human consumption/intervention
 - Fault tolerant: in the input data, output products
 - Fault reports for human consumption (as opposed to "computer brain dump")
 - Heuristics to trigger optimal algorithms (not always the most expensive ones)
 - Develop algorithms to take advantage of large-N

PSF far sidelobes $\sim 1/N_{\rm ant}$

Near sidelobes are higher

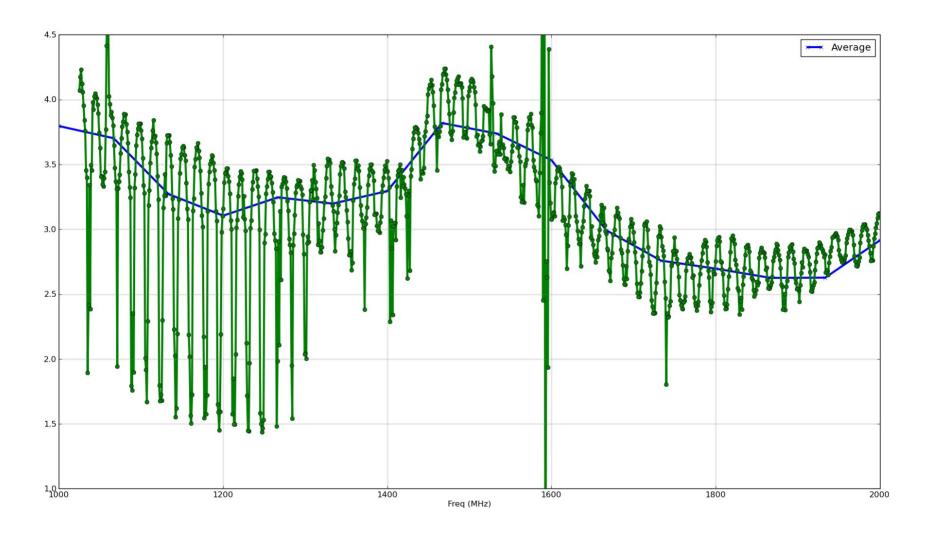
Zhang et al., ApJ(submitted)

- Wide-band wide-field imaging is expensive (but required!)
 - A- + W-Projection
 - Computing load and memory footprint for filters (CF) is prohibitive
 - Solutions: GPUs, FPGAs. Other approaches?
 - Is current approach to MS + MT-MFS sufficient (model spectra as a polynomial)?
 - Is it efficient?
 - Wide-band Interferometric + Single Dish Imaging
 - Necessary to achieve imaging performance for diffused extended emission
- Time-domain
 - What is the optimal approach?
 - Account for time-variable sky brightness? Bi-spectrum?
 Combination? (Prototype algorithm, Rau et al.)

- Effects of wide-band antenna far-field pattern
- 300 antennas, higher frequency spread over 300Km: most likely antenna-to-antenna variations (ALMA example)
 - Develop parameterized models that also capture these variations to the appropriate level
 - What is the appropriate level for NGVLA?
- Full-stokes imaging
 - Characterize in-beam effects.
 - Will learn about limits from work for EVLA/ALMA
- Atmospheric effects
 - Characterize (phase structure function)
 - A hard, largely unsolved problem
 - Synergy with existing telescopes

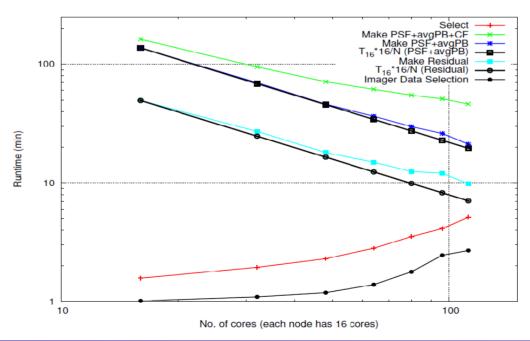
- Antenna pointing errors
 - Pointing SelfCal: Required? Possible? Solution interval?

Noise Budget:

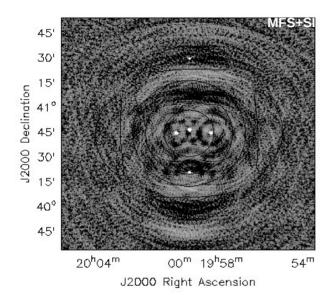

$$\sigma(p) = \left[\frac{2 k_b T_{sys}}{\eta_a A N_{ant} \sqrt{\nu_{corr} \tau_{corr} N_{SolSamp}}} \right] \frac{1}{S}$$

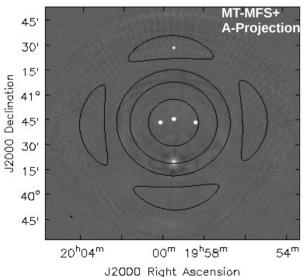
where
$$S = \int \frac{\partial E_i(s, p)}{\partial s} E_j^*(s, p) I^M(s) e^{2\pi \iota s. b_{ij}} ds$$

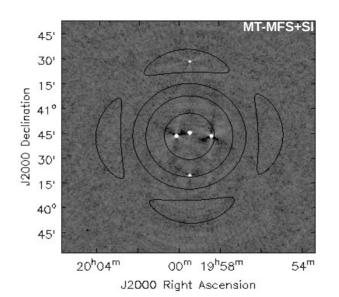
- Characterization (Kundert et al. IEEE Ant&Prop, in prep.)
 - Order of errors: PB shape/freq. Dep., Pointing errors/(rotation?), Ant-to-ant variations

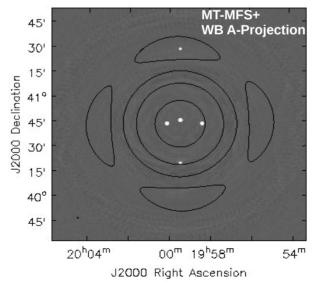

- Shape variations (temporal, spectral)
 - In general more serious (non-hermitian)
 - Develop low-order models for PB

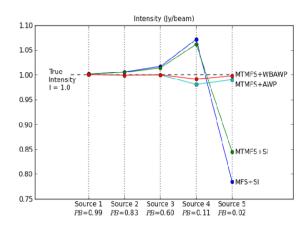
- Computing & Memory footprint:
 - Image reconstruction cost, as done now, scales as $N_{CF}^2 N_{vis} N_{taylorTerms}$ NGVLA/EVLA $\sim 10^{3-4}$
 - Memory foot print scales with $N^2_{\,\,\text{terms}}$ $N^2_{\,\,\text{Scales}}x$ Image size
- Some compute-hotspots deploy well on GPUs/FPGAs
 - Scale from parallel imager (CASA), AWS
 - A 1000-core AWS successful run as a test for a low-order solver

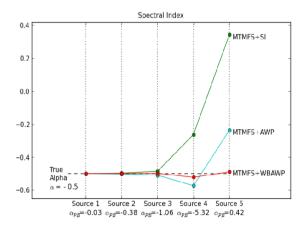

Take-away messages


- Develop human resource with multidisciplinary skills
- Will benefit from SKA1/EVLA/ALMA
 - If 10—100GHz range, imaging problem not as bad as for SKA1
- High memory footprint: Review modeling algorithms (a.k.a. "deconvolution" algorithms), storage, display, mining,...
 - Also depends on affordable computing h/w
- Always non-coplanar & wide-band: W- + A-Projection + MTMFS: Software for heterogeneous h/w to mitigate current bottlenecks.
- <u>Wide-field full-pol imaging</u>: Learn from work in progress...
- Scalable algorithms/software
 - Multi-node+massively parallel accelerators or massive cluster + memory ...

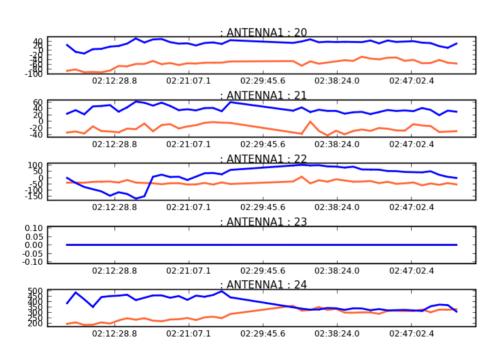

Heuristics for auto-tuning.

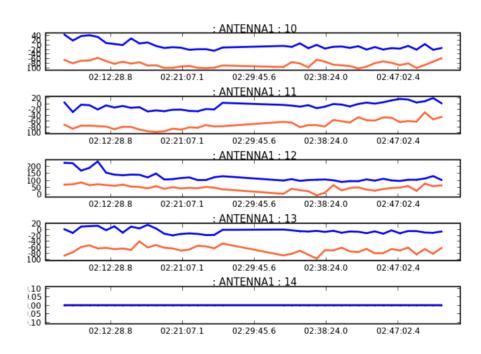



Simulations



Bhatnagar, Rau & Golap: ApJ, 2013


Pointing SelfCal


Pointing errors: ~20 – 30 arcsec.

Residual Pointing error at 10GHz: 2% of PB

Time variable: Ref. Pointing time-scale: ~30 min.

Estimated DR limit: ~10000:1

