The Next Generation Very Large Array:

Science in Nearby Galaxies

Eric J. Murphy for the Galaxy Ecosystem Working Group (Caltech/IPAC)

Gastrophysics: Multi-Process and Multi-Scale

Leroy KISS talk

Game Changing, Qualitative Gains for Studies of Nearby Galaxy:

Spectral Line Mapping:

Map the diagnostic fingerprints of molecules and atoms in the cool ISM ~50x faster than ALMA

Enable major advances in our understanding of:

- astrochemistry
- the interstellar medium
- star formation
- dynamics

Wide-Band Continuum Imaging:

Simultaneously capture all major radio emission mechanisms in a single observation (synchrotron, free-free, dust, SZ effect)

Enable major advances in our understanding of:

- the physics of cosmic rays
- ionized gas
- dust
- hot gas around galaxies.

Very High Resolution Imaging:

- obtain a complete view of the Milky Way's structure
- resolve actively forming high mass stars and track their motion
- resolve three dimensional motions of forming stars and nearby galaxies

Spectral Line Mapping Beyond ALMA

The range 1.2 - 116 GHz offers a stunning range of diagnostic power with minimal sensitivity to temperature effects. The ngVLA is the next logical step beyond ALMA in spectroscopy.

- Molecular lines carry fingerprints of chemistry, temperature, density, presence of shocks, gas distribution, and kinematics.
 SiO, NH₃, HCN, HCO+, CS, CO and a host of other molecules have their fundamental transitions in the
 - SiO, NH₃, HCN, HCO+, CS, CO and a host of other molecules have their fundamental transitions in the range 1.2-116 GHz, which are faint (10-100x fainter than CO)
- Even with ALMA, spectroscopy is a major time investment (the level zero goal of one Milky Way at z ~ 3) take a day.
 - Under any reasonable scenario mm-wave spectroscopy will remain a vibrant field over the coming decades because the observations take so much time and the insight into physical conditions is irreplaceable.

Spectral Line Mapping Beyond ALMA

State of the Art: M51 in CO (J=1-0) at 1" and ~1 K per km s⁻¹ - Schinnerer et al. (2013) -- 200 hr with PdBI ~ 15 hr w/ ALMA ~ 12min with ngVLA

• For single lines in Band 3, the ngVLA is ~75x faster than ALMA

Machine	Image rms 1hr in a 1 km/s Channel	rms Brightness Temperature for a 1" Beam	Approximate Field of View (FWHM)
ALMA (40 dishes) - 345 GHz	2.0 mJy/bm	0.02 K	16"
NGVLA (VLA x 5) - 100 GHz (assumes VLA dish quality)	0.15 mJy/bm	0.019 K	56"

- For Band 7, an upgraded VLA achieves similar rms over >10 times the area compared to ALMA and probes lower frequencies (lower ladder transitions) and so is less sensitive to the details of excitation.
- This is a bit pessimistic: if the dishes and system were optimized for ~3-4mm observations, should be able to map CO ~>50x faster than ALMA in Band 7.
- Combining with bandwidth (~x3 due to multiple tunings), this machine is up to ~150 times faster than ALMA at mapping lines!

Key Considerations For Spectral Line Mapping

- Surface brightness sensitivity to study the cold ISM line sensitivities need reach down
 into the K regime (even to <~ mK for exgal). It matters where the dishes sit, e.g., at 100
 GHz the current "D" configuration is already ~ arcsecond.
- Angular Resolution at the high end of the mm-wave band the angular resolution implied
 even by the current VLA configurations is very high ("A" is twice ALMA's maximum
 baseline already).
- Spectral Resolution Galactic (or highly resolved extragalactic) work will require high
 (fraction of a km/s) spectral resolution across large parts (but maybe not all) of the
 band.
- uv Matching over a decade in frequency means that a single physical telescope configuration produces a wide range of wavelength spacings - matching the upper and lower parts of the band.

Continuum Science Beyond the Jansky VLA

- Why We Care: between ~1.2 and 116 GHz all major radio emission mechanism contribute to the SED at similar levels. Sensitive, wide-band, high resolution observations in this regime let us understand the physics of dust, ionized gas, cosmic rays, magnetic fields, and hot gas.
- The Leap Forward: The proposed instantaneous bandwidth, collecting area, and baselines (all ~5-10x VLA), should capture new regimes in continuum science: faint, extended emission, SZ effect in new places, full dust+thermal+non-thermal SED at once.

ngVLA is an **unprecedented** machine that uses the full radio continuum to study astrophysics. By contrast:

- ALMA is mostly optimized for dust emission
- SKA should be a synchrotron machine
- the ngVLA maps them all simultaneously, making it a physics tool!

Robust Maps of Star Formation in Nearby Galaxies

M51 at 33GHz (free-free emission)

Model 33GHz from Ha

- units: μ Jy/bm for $\theta_S = 1$ "
- 15m dishes
- 8GHz bandwidth
- 2hr/ptg: rms ~ 400 nJy/bm
- $<A_{v}> \sim 3 \text{ mag (Scoville+ 2001)}$
- Equivalent map would take ~200 to 300x longer with JVLA (i.e., ~2500 hr !!!!).

Direct measure of ionizing photon rate without [NII] or extinction corrections

Key Continuum Considerations

- Bandwidth: Wide instantaneous bandwidth is a major enabler, with resolution (beyond ~2 MHz or so) secondary.
- Brightness Sensitivity: As with lines (but not the same numbers) the ability to detect a
 diffuse, faint glow (at high resolution) is key to a lot of science and this means brightness
 sensitivity is key to a lot of science. This comes from a more filled (compact) array.
- uv coverage and frequency: Again, the wide spectral coverage means that the interaction of frequency and antenna position might complicate creation of a continuous SED. But this is a secondary concern.
- Polarization: For both line and continuum (but especially continuum), wide band
 polarization capabilities will be key to study the morphology and magnitude of magnetic
 fields.

The Power of the ngVLA Bandwidth: Continuum and Lines at the same time High Enough Resolution to see Evolution

HII regions in M66

HCO⁺ contours on 33GHz

HCN contours on 95GHz

PEAKS OF CURRENT STAR FORMATION OFFSET FROM SITES OF FUTURE STAR FORMATION

MURPHY ET AL. IN PREP.

Very Long Baseline Science Beyond the "HSA"

- We know very little about the far-side structure of the MW
- ngVLA will provide a complete view of the large scale structure of MW

- The orbits and fate of the Local Group galaxies remain uncertain need proper motions ~10's of km/s at ~1Mpc
- ngVLA will deliver 3D imaging of dynamics of LG for dark matter, real-time cosmology

Much of the science requires ~20% of collecting area at long baselines.

Key Very Long Baseline Numbers

- Baseline length a few hundred km and a few thousand km offer qualitatively different science (few hundred km great for star formation, a few thousand needed for "super" version of current science). Designing in very long baseline science offers advantages compared to post-hoc construction of next generation VLBI networks.
- Frequency coverage high frequency might be less of a driver for the very long baseline applications. It's possible that the key masers and continuum applications could be achieved with ~5 50 GHz coverage. Heterogeneous design? At least not a driver.
- **Spectral Resolution -** Spectral resolution is important (masers) but not necessarily over the whole band. It's not totally clear that the VLBI applications drive the frequency setup.
- Collecting Area at Long Baselines sensitivity dominates considerations for VLBI science, to do qualitatively new work large amounts of collecting area at Earth-spanning baseline lengths are required.

Food for thought and Implications for Design / Science Requirements:

- The current VLA is already ~3x ALMA's collecting area.
- A 5x VLA concept ~2x more collecting area than the re-baselined SKA1-MID
- Brightness sensitivity is key for many line and continuum requirements (D/C-configuration w/ a lot more collecting area already optimized for 100GHz "thermal" (~K) line science.
- uv-coverage matching complicates "ratio science" (movable vs. lots of dishes)
- Mapping speed / mosaicking small dishes
- Frequency coverage high end of the mm band a line driver, 100 GHz a driver for continuum but not 115 GHz, high frequency less key for VLBI applications.
- Spectral resolution be ambitious with correlator / computing specs, this project will gestate for a long time
- Even in "next generation" mode, the HI and CO (+isotopologue) lines represent irreplaceable workhorse lines.