Star and Planet Formation with the Next Generation VLA

"Technology Concepts for a ngVLA", Pasadena, CA

Laura Pérez Jansky Fellow @ VLA, NRAO

Collaborators and Contributors

"Cradle of Life" Science Working Group @ ngVLA

David Alexander Sean Andrews Henrik Beuther Maite Beltran Ted Bergin Geoff Blake Tyler Bourke **Crystal Brogan** Bryan Butler Paola Caselli John Carpenter Claire Chandler James di Francesco Roberto Galvan-Madrid Adam Ginsburg

Thomas Henning Mark Hofstadter Meredith Hughes Chat Hull Andrea Isella **Doug Johnstone** Joseph Lazio Hauyu Baobab Liu Laurent Loinard Steve Longmore **Betsy Mills** John Monnier Raphael Moreno Arielle Moullet Karin Öberg

Imke de Pater Laura Pérez Charlie Qi Luca Ricci Alvaro Sanchez-Monge Peter Schilke Andrew Siemion Leonardo Testi John Tobin Jonathan Williams **David Wilner** Mark Wyatt Qizhou Zhang

Areas of Interest

"Cradle of Life" Science Working Group @ ngVLA

Credit: A. Isella

They are *dusty* environments!

They are dusty environments!

They are dusty environments!

Amount of material needed to become optically thick

They are dusty environments!

They are dusty environments!

They are compact in size!

(Hyper/Ultra) Compact HII regions .. < 10³ AU Protoplanetary disks< 10² AU Planet forming region < 10 AU

Synergy with Exoplanet Science

TMT, JWST, etc.

NextGen VLA will provide critical spatial

resolution

The Formation of Our Solar System

and the second second

いるなないないないでもないない

たんないーないところとうろうないまで

(Some) NextGen VLA Science Cases

Unsolved problems in star formation:

- Disks in early phases?
- Origin of multiplicity?
- Role of magnetic fields?

 Chemistry in precur (volatiles, compl

 Imaging the planetforming region in near protoplanetary disks

 Probing planet formation through the distribution of dust and pebbles

(Some) NextGen VLA Science Cases

High Mass Star Formation

- Resolving inner ionized regions of accreting massive stars
- Star formation near a black hole in the inner few pc in the Galactic Center

SETI:

Search for artificial nonman-made radio signals

- Unsolved problems in star formation:
 - Disks in early phases?
 - Origin of multiplicity?
 - Role of magnetic fields?

 Chemistry in precursors to our Solar Systems (volatiles, complex organic molecules)

ないないないないであっていないないろうろうろうろうでものでものである

 Probing planet formation through the distribution of dust and pebbles

- Mapping *atmospheres of giant* planets in Solar System
- Chemistry of comets (ammonia/water)

White Paper on Cradle of Life Science

Next Generation VLA Science White Paper

Working Group 1: "The Cradle of Life"

March 24, 2015

Andrea Isella¹, Chat Hull^{2,3}, Arielle Moullet⁴, Roberto Galvan-Madrid⁵, Leonardo Testi⁶, Karin I. Öberg⁷, Luca Ricci⁷, John Tobin ⁸, Joseph Lazio⁹, Andrew Siemion¹⁰, Hauyu Baobab Liu¹¹

¹ Physics & Astronomy Department, 6100 Main MS-61, Houston, Texas 77005, USA, isella@rice.edu

² Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 42, Cambridge, MA, 02138, USA, chat.hull@cfa.harvard.edu

³ Jansky Fellow of the National Radio Astronomy Observatory

⁴ National Radio Astronomy Observatory, amoullet@nrao.edu

 5 Centro de Radiostronomía y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán, México

⁶ ESO, Karl Schwarzschild str. 2, 85748 Garching, Germany

 7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

 8 Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden, The Netherlands

 9 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 138-308, Pasadena, CA 91109, USA

¹⁰ University of California, Berkeley

 11 Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 106, Taiwan

Abstract

This paper summarizes the contribution of more than twenty scientists spread across North America, Europe, and East Asia and is aimed at developing science cases for the *Next Generation Vary Large Array* (NGVLA). The *Cradle of Life* science working group focuses on the formation of low and high mass stars, on the formation and evolution of protoplanetary disks, on the study of the Solar System, and on the possible detection of radio signals from extraterrestrial civilizations. The proposed science cases have been tailored based on the current specifications of the NGVLA, with particular attention

For more info:

https://safe.nrao.edu/wiki/bin/view/ NGVLA/CradleOfLifeSWG

Mapping atmospheres of giant planets in Solar

System

NGVLA frequency coverage: ~5-100 GHz \rightarrow trace deep atmospheric dynamics with different molecules

NGVLA high resolution \rightarrow storms and small scale features gas giants

NGVLA sensitivity → longitudinal resolution on fast-rotating planets

IR and radio (VLA-2cm) thermal maps of Jupiter (Sault et al., 2004)

Chemistry of COMs in Solar System Precursors

COMs = Complex Organic Molecules

Detectability of Glycine, Jimenez-Sierra et al. 2014

NGVLA frequency coverage: up to ~100 GHz \rightarrow access to multiple COMs

NGVLA resolution \rightarrow detection more important than resolution

NGVLA sensitivity \rightarrow ~2mk RMS for ~10- σ detection of Glycine @ ~60GHz

Chemistry of COMs in Solar System Precursors

COMs = Complex Organic Molecules

Detectability of Glycine, Jimenez-Sierra et al. 2014

Imaging planet-forming region in nearby disks

2. Low optical depth across 1. Pebbles and rocks throughout the disk disk radii ALMA Partnership et al. 2015

> 3. Access to terrestrial planetforming regions

Seeing Pebbles and Rocks

Credit: M. Hughes

Log [Grain Size (a)]

Imaging planet-forming region in nearby disks

We can only trace underlying mass distribution of solids where $\tau < 1$ Want to know when, where, how much mass in pebbles exists

 $\tau = 1 \text{ at } \lambda = 3 \text{ cm}$ (NGVLA) τ = 1 at λ = 1mm (ALMA)
* Note this is for "typical" and face-on disk

Credit: M. Hughes

Emission from pebbles declines steeply with

fraguanov

Requiring lots of sensitivity!!

Guidance in parameter space for ngVLA

- 5-10x surface area, with *increased efficiency* compared to VLA antennas
- Continuum science pushes for wide bandwidths (32GHz nice!)
- COMs detections (multiple lines) pushes for wide bandwidths
- Terrestrial-planet formation science pushes for long baselines
- Caveat: think carefully about array configuration:
- Continuum science pushing to sensitivity in long baselines
- But spectral line science needs short baselines for Tb sensitivity

 The NGVLA could push down to 5–10AU separation at distances out to 1 kpc → current ALMA science throughout the Galaxy!

Why low optical depths?

We can only trace underlying mass distribution of solids where $\tau < 1$ Want to know when, where, how much mass in pebbles exists

Seeing Pebbles and Rocks

Millimeter flux (optically thin): $F_{\nu} \propto \Sigma * \kappa_{\nu} * B_{\nu}(T) \longrightarrow \lambda^{-3}$ (Surface density) (Planck function $\infty \lambda^{-2}$)

> The bottom line: Flux drops off like crazy with wavelength. Need LOTS of sensitivity to image pebbles.