
Parallelisation in CASA 4.0

Report on the work by the ESO HPC group in the 4.0 development cycle (svn r495)

S.Castro, J.A.Gonzalez, D.Petry (lead)
(ESO)

17 October 2012

Contents

1 Introduction 2

2 Work on the MMS structure 3

3 Work on the cluster infrastructure 4

4 Work on flagging 5

5 Work on MMS splitting and concatenation 5

6 Work on the calibration tasks 6
6.1 gencal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.2 gaincal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.3 bandpass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.4 setjy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.5 fluxscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.6 applycal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7 Work on uvcontsub 7

8 Work on wvrgcal 8

9 Testing 8

10 First performance measurements 9

11 Open issues and suggestions for next steps in development cycle 4.1 13
11.1 Detailed performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11.2 CASA tasks not yet tested with MMSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11.3 Improving the efficiency of simple cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11.4 Improving the efficiency and usefulness of logging . . . . . . . . . . . . . . . . . . . . . . 13
11.5 MMS-capable CASA tasks still to be parallelised . . . . . . . . . . . . . . . . . . . . . . 13
11.6 Automatic cluster setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11.7 Partition improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11.8 Lazy importasdm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11.9 Optimize special cases of split usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11.10Optimize uvcontsub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



1 Introduction

In the CASA 4.0 development cycle, the ESO HPC group was working on debugging and extending
the trivial parallelisation of non-imaging tasks in CASA to the point where an entire ALMA data
analysis can be carried out on multi-MSs (MMSs). The main goal was to achieve a situation where the
data can be partitioned directly after import and then kept an MMS over all calibration steps without
having to be repartitioned such that the final calibrated dataset can be fed directly as an MMS into
parallel clean (pclean).

This goal was achieved in CASA 4.0: An entire ALMA data analysis can now be carried out using
parallelised tasks as demonstrated by the script alma-m100-analysis-hpc-regression.py which is now
part of the CASA regressions suite. Many low-level changes were required in the MMS creation and
the CASA cluster infrastructure (see section 2 and 3) on the one hand and some in the casacore/ms,
the casacore/tables, the code/synthesis, and the code/air casawvr modules on the other hand.

In addition to working towards the main goal, we put emphasis on proper unit testing for each
affected CASA task. A new part of the unit test infrastructure was created which exercises tasks on
data in MMS format (see section 9). For some tasks unit tests had to be created from scratch.

This writeup describes the results of our work going along the individual items roughly in the order
of the data analysis stream. Essentially all related CASA JIRA tickets are gathered under the two
umbrella tickets CAS-4106 and CAS-4372.

The tasks which have been tested to work with MMSs are

• applycal

• bandpass

• clean

• concat (results in an output MS, not an MMS)

• fixplanets

• flagmanager

• fluxscale

• gaincal

• gencal

• listobs

• listpartition

• listvis

• listhistory

• partition (repartitioning of an MMS is also possible)

• pclean

• plotms

• setjy

• split (results in an output MS by default, in an MMS if parameter keepmms=True)

• flagdata

2



• uvcontsub (results in an output MMS)

• virtualconcat (results in an output MMS)

• vishead

• wvrgcal

Other tasks may also work with MMSs, but this wasn’t confirmed with dedicated tests, yet.
Among the tasks mentioned above, the following tasks will work in a parallelised way on MMSs to

speed up processing or at least avoid repartitioning:

• applycal

• partition (repartitioning of an MMS is also possible)

• setjy (when parameter usescratch=True)

• split (when parameter keepmms=True)

• flagdata

• uvcontsub

The parallelisation of these tasks still has to be regarded as a prototype which has the required
functionality but is not yet optimized. Optimization will have to happen in a second iteration, presum-
ably in development cycle 4.1. Starting points for optimization are the handling of the MS subtables
and possible overhead in the operation of simple cluster.

Preliminary performance tests on a 12-processor workstation with a 1.2 TB solid state disk (SSD)
show improvements in the parallelised tasks over a non-parallelised execution on the same system (i.e.
also using a SSD!). These improvements depend on cluster configuration and partitioning setup. This
is discussed in section 10.

A significant improvement over the non-MMS case can be seen in applycal, time averaging in
split, and when comparing virtualconcat with concat.

As a next step, a detailed evaluation of the performance of CASA 4.0 on powerful systems with
parallel file systems such as the Socorro cluster or the future EU ARC cluster (to become available in
November 2012) will have to be carried out.

Suggestions for further work are enumerated in section 11.

2 Work on the MMS structure

The original MMS as it came out of, e.g. partition, was not yet mature. It was spread over two parallel
directories and could not easily be moved, renamed, or copied. The voluminous POINTING table was
stored in each subMS leading to an MMS data volume much larger than the equivalent MS.

New features in CASA 4.0:

MMS can now be handled like a normal directory: With changes both in casacore (with help
by Ger van Diepen) and on the Python level (partitionhelper.py and task partition.py), the MMS
can now be handled like a normal (“monolithic”) MS. It can be moved and renamed like any
directory. And tasks which are not MMS-aware can process it like a monolithic MS.

Single copy of POINTING and SYSCAL: In order to reduce the volume of the MMS, the POINT-
ING and SYSCAL tables (which are read-only in all use cases and identical for all subMSs) are
stored only with the master-subMS and linked into the other subMSs.

3



Create a .flagversions for the MMS: In a normal data analysis stream, data is imported using
importasdm which creates a backup of the flags in a directory parallel to the MS with extension
.flagversions. By running partition after importasdm this backup got lost and could not be used
later in other parts of the data analysis stream. We introduced in the partition task the capability
to create a .flagversions directory for the output MMS which saves the flags present in the MMS
at its creation.

3 Work on the cluster infrastructure

We have carried out a complete overhaul in the cluster framework to improve aspects such as configu-
ration, deployment, error handling, communication, monitoring, robustness and security. Additionally,
the new version of the cluster infrastructure comes with a set of unit tests that exercises all the as-
pects above mentioned and proves its compatibility with Mac OSX 10.6/10.7 64bits and RHEL 5.3/5.6
32b/64b.

New cluster configuration file: Defined and implemented a new format for the parallel processing
cluster configuration file that allows the user to specify the resources needed per engine together
with the percentage of idle resources (RAM and CPU) to be used in each node of the cluster
in order to deploy the maximum number of engines possible according to these constrains and
set the internal parallelisation variables within each engine (e.g.: OpenMP number of threads)
accordingly.

Exceptions and errors handling: Implemented an exception handling mechanism to control the
exceptions that occur at the engine level and show them at the controller CASA instance level.
The ERROR/SEVERE messages are now analyzed and shown at the controller CASA instance
level only when they are relevant to the global execution.

Localhost cluster: The cluster infrastructure can now easily be deployed on localhost without re-
sorting to ssh. Therefore it is not necessary to set a password free access anymore. Additionally,
there is a fallback mode when only one engine can be deployed, that automatically bypasses all
the cluster infrastructure, and performs the execution locally and sequentially trough the list of
subMSs.

Controller/Engine communication: Return variables from the tasks executed in the remote en-
gines are now either consolidated into one single return variable which is forwarded to the con-
troller CASA instance level or grouped together in a subMS/return variable map for further
analysis of the results. Additionally it is now also possible to override the input parameters for
each task in order to customize the run for each subMS. Finally the communication via ssh be-
tween the engines and the controller instances is now more robust by means of proper redirection
of stdout and stderr.

Cluster monitoring service: There is a new monitoring service that analyzes the status and re-
sources used per engine and in total per node included in the cluster. The resources monitored
are CPU (percentage), RAM (total in MB), I/O (total RW and rate per second) together with
some other parameters to identify the job being executed (task name, subMS name and execution
time). This information is dumped into an ASCII file, which can be monitored in a separated
terminal.

Cluster robustness: The cluster internal state machine comes with a complete overhaul to load the
engines environment exactly as a normal CASA instance but w/o the unnecessary services (e.g.:
logger) and finalize the cluster gracefully using the native iPython multiengineclient methods
and terminating the service threads properly even when the cluster objects are deleted before
stopping the cluster.

4



Security policy: The security policy has been reviewed to avoid interferences between consecutive
deployments of the cluster infrastructure that were causing problems in Mac OSX. Now the RSA
private keys used in the controller-engine communication are specific to each cluster and are not
re-used by any other cluster instance.

Multiple platform support: The new version of the cluster infrastructure comes with complete set
of unit tests that exercises all the aspects above mentioned and proves its compatibility with
Mac OSX 10.6/10.7 64bits and RHEL 5.3/5.6 32b/64b.

4 Work on flagging

The new flagdata framework (tflagdata, renamed to flagdata in CASA 4.0) is now fully compatible
with the MMS format including the following aspects:

New features in CASA 4.0:

Consolidation of return variables: The returning summary dictionaries are now merged in a single
dictionary.

Handling of input/output files: The input/outfiles are properly pointed by means of full paths so
that the remote engines can located them regardless of their local working directory.

Handling of flagcmd lists: The flagcmd lists are now re-written to adapt them to the remote en-
gines environment.

Handling of neglectable errors: The NullSelection ERRORS that ocurr at the engine level due to
empty selections in some subMS are now handled properly and not forwarded to the controller
instance.

Unit tests compatibility: The suit of tflagdata unit tests can now be ran vs. MMS instead of
MS automatically (see section 9). Additionally there is a new set of unit tests to cover for the
MMS-specific features above mentioned.

5 Work on MMS splitting and concatenation

CASA users are used to being able to operate on MSs with the split and concat tasks, i.e. extract a
subset of the data from an MS into a new MS with the possibility to perform averaging or construct
a single MS (e.g. for delivery) from a group of individual MSs. Essentially all CASA guides make use
of these tasks.

It was therefore necessary to make sure that split and concat (a) work with MMSs and (b) perform
as in the case of monolithic MSs. The second point, i.e. speed, is essential because the time which
may be gained in parallelisation elsewhere must not be wasted during splitting and concatenation.

New features in CASA 4.0:

New task virtualconcat: The new task virtualconcat uses the new tool method ms.virtconcatenate()
which in turn uses a new method in the MSConcat class in casacore. It permits the user to con-
catenate arbitrary datasets (both MSs and MMSs) into a single MMS. When the parameter
keepcopy is set to True (default False), the input datasets are preserved. Otherwise they are
just moved into the new MMS thereby reducing the necessary I/O by a large amount. If the
input is already an MMS, it is treated like a group of individual MSs. The subtables of all
subMSs of the new output MMS are then reindexed using the normal concat routines.

A detail concerning the creation of the FIELD table needed to be covered in this case: If two
fields have the same direction but a different name, e.g. “3C273 phase” and “3C273 bandpass”,
then concat in CASA 3.4 would merge them because it would disregard the field name and only

5



test the direction. With a new parameter respectname both in concat and virtualconcat, it is
possible to force concat to keep the two fields separate.

New bool parameter “keepmms” in split: Running split on an MMS produces by default a
monolithic MS. If the user wants to continue the processing with parallel processing, he/she
needs to repartition the data. This introduces time-consuming I/O. With the new keepmms
functionality, setting keepmms to True (default is False) makes split operate on the subMSs of
the input MMS individually. The subMSs which result in a non-empty output MS (selection)
are then virtually concatenated into the output MMS using ms.virtconcatenate().

To further speed up the processing, split with keepmms=True handles the POINTING table
separately if no selection on time or antennas takes place (the majority of the use cases).
If need be, also the POINTING table is virtually concatenated using the new tool method
tb.createmultitable()

6 Work on the calibration tasks

While there was little work required on the Python level making the calibration tasks run on MMSs,
considerable work went into creating the missing unit tests for these tasks.

Furthermore, the testing of parallel applycal revealed that the VisSet class and related classes were
deriving the absolute paths of the main table and MS subtables in an unorthodox way which did not
work with the general MMS. This required several fixes in the synthesis module.

6.1 gencal

It was not necessary to modify anything in task gencal to make it work with MMSs. This was verified
with the current unit tests using the option “–datadir” as described in section 9.

6.2 gaincal

It was not necessary to modify anything in task gaincal to make it work with MMSs. We created new
unit tests for this task and verified its validity using the option “–datadir” as described in section 9.

6.3 bandpass

It was not necessary to modify anything in task bandpass to make it work with MMSs. We created
new unit tests for this task and verified its validity using the option “–datadir” as described in section
9.

6.4 setjy

The setjy task is now fully compatible with the MMS format in both scratch and scratch-less mode:

Scratch-less mode operation: setjy iterates sequentially in the main controller instance trough the
list of subMS performing all the setjy processing individually for each subMS thus setting the
model properly in every ’eligible’ subMS. Afterwards, there is a new step in setjy to gather the
models from the keywords of each individual subMS and copy them to the rest.

Scratch mode operation: setjy uses ParallelTaskHelper to run setjy in parallel for each subMS cre-
ating the MODEL DATA column for all of them in order to ensure table description consistency
across the MMS (this is also the behavior for normal MS) although it is not filled for the subMSs
that don’t have any rows in the data selection range for performance reasons. The underlying
tool methods are now parallel-safe by means of using subMS specific names for the temporary
model files.

6



Visibility model header validation: The visibility model header has been validated by checking
that all subMSs contain the models for all fields in their keywords with the parameters specified
in the setjy run.

MODEL DATA column validation: The MODEL DATA column has been validated by checking
that all the subMSs with rows in the data selection range have their values aligned with the
parameters specified in the setjy run and additionally by checking that the subMSs without rows
in the data selection range have their values set to the default.

6.5 fluxscale

It was not necessary to modify anything in task fluxscale to make it work with MMSs. We created
new unit tests for this task and verified its validity using the option “–datadir” as described in section
9.

6.6 applycal

Was superficially already MMS-capable in CASA 3.4 but needed work in the underlying code in the
synthesis module (see above). Furthermore, the following work was done:

Handling of negligible errors: The NullSelection ERRORS that occur at the engine level, due to
empty selections in some subMS are now handled properly, and not forwarded to the controller
CASA instance. Additionally, they are internally handled to make sure that all sub-tables are
properly closed.

Data columns and table description consistency: The CORRECTED DATA column is always
created to ensure table description consistency, although it is not filled in for the subMSs that
don’t have any rows in the data selection range, for performance reasons. Additionally, the re-
initialization methods have been modified, in order not to create the MODEL DATA column,
after recovering from the NullSelection errors, that occur at the subMS level.

MMS vs MS validation: The CORRECTED DATA column produced by an input MMS has been
validated vs the result obtained with the equivalent MS, when using bcal, gcal and fluxscale cal
tables.

7 Work on uvcontsub

The uvcontsub task was parallelised for the MMS case. The unit test was updated to also exercise the
case of MMS input.

Input MMS compatibility: It can process an input MMS in parallel, extracting the continuum
spectrum for each subMS in a remote engine individually.

Output MMS result: The resulting cont and contsub files from all the subMSs are gathered, and
virtually concatenated to present them in MMS format. In both cases, the POINTING table is
handled specially in order to ensure that there is only one full copy of it in the output MMSs
and that there is no time wasted on making intermediate copies.

MMS vs MS validation: These results have been validated by comparing the output cont/contsub
files produced by and MMS with the cont/contsub files produced by the equivalent MS.

7



8 Work on wvrgcal

The wvrgcal task in CASA 4.0 uses the code contained in the almawvr library version 1.2 together
with the actual executable “wvrgcal” compiled from source files in the code/air casawvr module.

When testing on MMSs, it became apparent that the code in code/air casawvr was making the
assumption that the rows of the MS main table are sorted in time. Since this is not generally true,
neither for an MMS nor for an MS, a time sorted row index needed to be introduced. These changes
concerned four separate parts of the code. They are in r21246.

The modified code in code/air casawvr has been sent to Bojan Nikolic to be merged back to the
Cambridge repository.

9 Testing

The existing regressions and unit tests of CASA 3.4 did not exercise any of the new HPC-related
functionality. Also the unit test for partition was not yet adequate. For some of the modified tasks,
unit tests did not even exist. In order to ensure that the HPC-related modifications would not break
any old functionality, missing unit tests had to be created. Once these existed, a way to repeat these
same unit tests with input in MMS format had to be found. This required the creation of some
additional test infrastructure to handle MMS as described below. An additional requirement we set
for ourselves was that we avoid to bloat the data repository with MMS copies of the already stored
MSs.

New features in CASA 4.0:

New CASA task “listpartition”: Similarly to the task “listobs”, “listpartition” can list the prop-
erties of an MMS, as well as an MS. For each subMS of the MMS, it lists in the logger or save to
a file, the available scans, spws, number of channels and the size in disk. There is also a boolean
parameter “createdict” that returns a Python dictionary for manipulation. See help listpartition
inside casapy for more information.

Many functions that are used by listpartition are made available for the users in the Python
script partitionhelper.py. It contains functions to easy the comparison of the structure of MMSs
and MSs. These functions are heavily used in test listpartition.py and test partition.py. A
couple of other functions to make more general table comparisons is made available in the script
testhelper.py. Both, testhelper.py and partitionhelper.py can be imported inside casapy.

New option “–datadir” in runUnitTest.py: The unit test framework got a new option called “–
datadir” which sets an environmental variable called TEST DATADIR, pointing to a directory
where the data is found. Tests can be modified apriori to read this variable to access data from
an alternate location, otherwise they work normally and use the path given internally in the
tests. This way, with a few new lines, any test can run using data from another directory. It
can be used to run the tests using MMSs or for any other general use that needs different data
sets. The unit tests manual linked from the CASA Index wiki page contains an example on how
to use this option. See also (http://www.eso.org/ scastro/ALMA/CASAUnitTests.htm). Or
any of these tests in the repository can be used as an example: test bandpass.py, test split.py,
test tflagdata.py, and many others.

As a result of our work to include the “–datadir” option in runUnitTest.py, a few bugs had to
be fixed in the unit tests framework. The script was also made more robust with a new parsing
of argument variables.

Easy way to create MMSs for the unit tests: Following the introduction of the “–datadir” op-
tion in the unit tests framework, there was the need to easily create MMSs for the tests. We
created two new scripts for this purpose. The main class “convertToMMS”, added to the file
partitionhelper.py, can be used to manually create MMSs from a directory containing normal

8



MSs, such as the directories in the data repository under data/regression/unittest. The script
runs using the default values of partition, except that “datacolumn” is set to ’all’. It tries to
create an MMS for every MS in the input directory. It skips non-MS directories such as cal
tables. If partition succeeds, the script creates a link to every other directory or file in the output
directory. This script might fail if run on single dish MS because the “datacolumn” needs to be
set in partition. In order to run this script inside casapy, do the following:

import partitionhelper as ph
datapath=’/opt/casa/data/regression/unittest/gaincal’
ph.convertToMMS(inpdir=datapath,createmslink=True)

This will create MMSs for all MSs in the gaincal directory. The MMSs are created inside a
directory “mmsdir” in the working directory, unless set otherwise. The “createmslink” option
will create a symbolic link to the new MMS with an extension “.ms”. Type ph.convertToMMS()
for further options to run this script.

The second script created for this project creates MMSs automatically for some CASA tasks. The
available tasks are the ones that have been verified to work with MMS, as described throughout
this document. The script “make mmsdata.py” runs outside casapy. For each of the tasks known
by the script, the convertToMMS() class is called up to create MMSs in the “unittest mms”
output directory, saved locally. The script has options to ignore some tasks or run only a few
of them. See below a few examples on how to use it. The script is installed under the path-to-
casa-installation/python/2.6/regressions/admin/.

# Get help to run the script;
casapy --nogui --log2term -c <path>/make_mmsdata.py

# See the list of tasks that the script will create tests for;
casapy --nogui --log2term -c <path>/make_mmsdata.py --list

# Create MMSs for all listed tasks;
casapy --nogui --log2term -c <path>/make_mmsdata.py --all

# Do not create MMSs for the given tasks;
casapy --nogui --log2term -c <path>/make_mmsdata.py -i listobs split

With these two scripts and the use of the “–datadir” in runUnitTest.py, one can run any task
test (modified for this purpose) and verify that it works with MMSs.

New set of cluster-specific unit tests: The new version of the cluster infrastructure comes with
a set of unit tests that exercises all the new features (see section 3) and proves its compatibility
with Mac OSX 10.6/10.7 64bits, and RHEL 5.3/5.6 32b/64b.

10 First performance measurements

The available test machine was a HP Z600 workstation with 12 processors and 12 GB RAM, a SATA
disk (2 TB), and a Solid State Disk (OCZ VeloDrive, 1.2 TB).

The benchmark scripts are available from the CASA repository:

alma-m100-analysis-regression.py

and

9



alma-m100-analysis-hpc-regression.py

The first script was already available for CASA 3.4. It executes a complete ALMA data analysis from
data import to image analysis. The second script, “alma-m100-analysis-hpc-regression.py” does the
same except that after importasdm, there is a call to partition which converts the imported MS to
an MMS. The rest of the analysis is then carried out based on MMSs and at the end clean or pclean
are used.

The timing of each step of the script is measured via a timing function defined at the beginning of
the scripts.

Table 1 shows the results using CASA stable r21422.
All tests were carried out in a working directory on the solid state disk. The differences in execution

time for the individual steps are purely due to the parallelisation and, in the first step, due to the
additional partitioning.

Varying the number of engines deployed between 6 and 10 and the number of subMSs in the
partitioning from 6 to 32 showed that for the test machine, a setup of 8 engines and 8 subMSs is
optimal. In this case, all subMSs can still be processed in one parallel iteration while each of the
engines has sufficient RAM and the SSD can provide enough throughput. On a different machine, the
optimal setup will be different.

10



Table 1: Performance comparison of CASA stable r21422 with default cluster setup running an
ALMA analysis on science verification data (taken in 2011) non-parallelised (non-HPC) and parallelised
(HPC) using 8 subMSs partitioned by scan and 8 engines on a HP Z600 workstation with 12
processors, 12 GB RAM, and a 1.2 TB solid state disk.

non-HPC version HPC version
Step Time Time Time Time Speedup Step description

used (s) Fraction (%) used (s) Fraction (%)

0 391.62 9.31 391.62 9.96 Data import
0b 0.00 0.00 230.16 5,85 Partitioning
1 2.59 0.06 3.84 0.09 0.67 Generate antenna position cal tables
2 1.03 0.02 4.07 0.10 0.26 Generate tsys cal tables
3 21.35 0.50 25.53 0.64 0.84 Correct the Titan position
4 156.36 3.71 97.90 2.48 1.60 Apriori flagging
5 178.76 4.25 177.98 4.52 1.00 Generate WVR cal tables
6 80.62 1.91 92.51 2.35 0.87 Generate delay calibration tables
7 1447.59 34.43 868.08 22.07 1.67 Apply antpos, wvr, tsys, and delay tables
8 404.57 9.62 360.04 9.15 1.12 Split off non-wvr spws and save flags
9 94.52 2.24 136.44 3.46 0.69 Flagging
10 231.26 5.50 225.07 5.72 1.03 Rebin to a reduced resolution of 10 km/s
11 5.83 0.13 10.97 0.27 0.53 Fast phase-only gaincal for bandpass
12 10.32 0.24 14.42 0.36 0.72 Bandpass
13 9.75 0.23 31.16 0.79 0.31 Setjy
14 48.02 1.14 57.02 1.45 0.84 Fast phase-only gaincal
15 23.48 0.55 31.85 0.81 0.74 Slow phase-only gaincal
16 27.22 0.64 35.96 0.91 0.76 Slow amp and phase gaincal
17 1.37 0.03 2.64 0.06 0.52 Fluxscale
18 158.51 3.77 105.30 2.67 1.51 Applycal

calib. 3294.86 78.37 2902.56 73.81 1.14 All import and calibration steps

19 29.01 0.69 35.15 0.89 0.83 Test image of the secondary phase cal
20 197.19 4.69 232.62 5.91 0.85 Test image of the primary phase cal
21 57.36 1.36 83.69 2.12 0.69 Test image of Titan
22 29.30 0.69 44.89 1.14 0.65 Split off calibrated M100 data
23 16.34 0.38 14.48 0.36 1.13 Concatenate M100 data (virtual in HPC case)
24 32.79 0.78 12.51 0.31 2.62 Average concatenated M100 data in time
25 251.12 5.97 287.26 7.30 0.87 Continuum image of M100
26 23.79 0.56 27.53 0.70 0.86 Determine and subtract continuum
27 1.12 0.02 4.35 0.11 0.26 Test image of central field
28 266.56 6.34 270.24 6.87 0.99 Clean line cube mosaic
29 3.21 0.07 15.61 0.39 0.21 Make moment maps
30 1.39 0.03 1.39 0.03 1.00 Verification of the regression results

total 4204.11 100.00 3932.43 100.00 1.07

11



Figure 1: The data presented in Table 1 as a bar chart showing the performance measurements obtained
as described in the text with CASA stable r21422 on a HP Z600 workstation (12 GB RAM, 12
processors) with a 1.2 TB solid state disk.

12



11 Open issues and suggestions for next steps in development
cycle 4.1

11.1 Detailed performance evaluation

The most important open issue is a detailed study of how the performance of all relevant tasks is
different on MSs and MMSs in order to determine the optimal tuning of the analysis system. This
study should be carried out on the intended final systems, i.e. clusters with parallel file systems but
on the side also on SSD-equipped high-power workstations.

For the study, also a regression with a larger, more recent dataset should be created and used.
This is already in preparation based on a ALMA QA2 calibration script for a 24-antenna dataset of
ca. 53 GB size.

The study should be careful not to tune the script to the best analysis path ex-post, i.e. in order
to be realistic, a path has to be followed which includes exploratory steps as would be present when
unknown data is analysed for the first time.

11.2 CASA tasks not yet tested with MMSs

The following tasks still need to be tested to work with MMS input. Tasks marked with a “(p)” can
be parallelised.

fixvis (p)

cvel (p)

hanningsmooth (p)

ft (p?)

exportuvfits

visstat

plotxy

polcal

delmod

11.3 Improving the efficiency of simple cluster

Startup and job distribution in simple cluster still seem to take too long. This has to be measured in
detail in order to determine if the cluster administration overhead could still be reduced.

11.4 Improving the efficiency and usefulness of logging

Presently, the terminal and logger output for some of the parallelised tasks is still either too terse or
too confusing.

Also, it is not clear if the computing power consumed by the logging process is significant and
whether it can be reduced.

11.5 MMS-capable CASA tasks still to be parallelised

Among the tasks which are already capable of processing an MMS but are not actually parallelised,
there is mainly one task which would still be worth to be parallelised: flagmanager. This task’s
execution time scales with MS size. It can take several minutes for a typical ALMA MS. Parallelisation
therefore makes sense. It would involve to also have partitioned flagversion tables.

13



11.6 Automatic cluster setup

The present heuristics take as input the number of processors and the amount of RAM and derive
the OpenMP setup and the number of engines to be deployed using the requirement of 512 MB per
processor and 90% of the total RAM and 90% of all the processors. This simple algorithm will need
to be tested and refined in order to make sure that typical computers are not overloaded and at least
one user interaction can still take place when the cluster is running.

Also, there are indications that pclean may need a different setup than the calibration-related
tasks. Fast setup switching may have to be enabled.

The fast setup switching could be achieved by adding a new method in the cluster framework to
dynamically specify the number or engines to use without having to re-deploy the cluster. This will
make an improvement when the cluster is deployed in a single machine, because one can reduce the
number of engines to be used depending on the resources needed per engine, which typically depend
on the task (for instance reduce the number of engines to be used when running pclean).

11.7 Partition improvements

Presently, the subMSs are not generally sorted in time. If the partition axis is TIME, then it would be
good to have the subMS numbering correspond to the time order. Tasks which access the main table
monolithically will otherwise have a non-optimal sort order.

11.8 Lazy importasdm

Ger van Diepen, Michel Caillat and DP are working on a prototype for a ALMA Storage Manager
which will be capable of making the ALMA (and EVLA) visibility BLOBs from the ASDM directly
readable (not writable) from the MS DATA column.

If this can be achieved and is reasonably fast, this would have two advantages:

1. In a MMS-based analysis, there would not have to be an intermediate MS written at import.
importasdm would just write an MS with a DATA column pointing to the ASDM BLOBS and
partition would then write this data into a MMS with a normal storage manager. This would
save 30% storage space w.r.t. the present MMS case (ASDM + MS + MMS) and potentially
also 30% of the computing time (the first MS is written much more quickly).

2. The lazy import would enable faster access to the metadata (listobs) of an ASDM within CASA.

11.9 Optimize special cases of split usage

In ALMA data analysis, there are four common uses of split.

a) Make copy of CORRECTED DATA into a new MS: This is a trivial operation which could
potentially be sped up by making the copy of CORRECTED DATA on the operating system
level and working with renaming the copied column to DATA.

b) Make copy of CORRECTED DATA into a new MS selecting only certain SPWs: This
is less trivial unless the partitioning already has done the selection for us. In that case, the prob-
lem could be reduced to selecting subMSs and performing the operation described under (a) on
them.

c) Time averaging: This is elegantly handled in the new split with keepmms=True. There is
indeed a speed-up of a factor approx. 2.

d) Spectral averaging: Changes the SPECTRAL WINDOW table and thus requires a change of
those tables. This is done with a virtual concat in the present split which is too time consuming.
More clever handling of the subtables would speed this up.

14



If these cases could be improved (case (c) is already fine), split on MMS would become sufficiently
fast.

11.10 Optimize uvcontsub

uvcontsub presently uses a direct call to task virtualconcat to recombine the created new subMSs. This
entails some overhead and should be replaced by calls to tool methods making use of the knowledge
about the subtable properties.

15


