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ABSTRACT

We tell you how to calculate molecular column density.

Subject headings: ISM: molecules
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1. Introduction

This document is meant to be a reference for those scientists who need to calculate
molecular spectral line column densities. We have organized the document such that some
basic background information is first provided to allow a contextural foundation to be
lain for further calculations. This foundation includes a basic understanding of radiative

transfer and molecular degeneracy, line strength, and hyperfine structure.

2. Radiative and Collisional Excitation of Molecules

When the energy levels of a molecule are in statistical equilibrium, the rate of
transitions populating a given energy level is balanced by the rate of transitions which
depopulate that energy level. For a molecule with multiple energy levels statistical

equilibrium can be written as:

n; Z Rij = Z anji (1)
J J

where n; and n; are the populations of the energy levels ¢« and j and R;; and Rj; are

transition rates between levels ¢ and j. The transition rates contain contributions from:

e Spontaneous radiative excitation (A;;)
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e Stimulated radiative excitation and de-excitation (R;; = n;B;; fooo Ju¢i;(v)dv)

e Collisional excitation and de-excitation (neoiiderCij)

where ¢, (v) is the line profile function and J, is defined as the integral of the specific

intensity I, over the source of emission:

1
J,=— [ IdQ (2)
A7

Our statistical equilibrium equation then becomes:

[Z (ncollzderCzj + B@]/ Jy i (v du> ZAU
j

7<t

an <ncolliderCl’j + B]z/ I/(bjl ) Zn] Ji
: 0
J

j>t

For a two-level system with ¢ defined as the lower energy level [ and j defined as the upper

energy level u, Y. _. A;; = 0 and the statistical equilibrium equation (Equation 3) becomes:

j<i

ny (ncolliderClu + Blu/ Jy¢lu(V)dV> =
0

Ny, <ncollidercul + Bul/ Jypu(v)dv + Aul) (4)
0

At this point we can derive the Einstein relations A,;, By, and By, by considering
only radiative excitation (Cj, = C,; = 0) and complete redistribution over the line profile
(w1 (V) = (V). Physically, this means that emitted and absorbed photons are completely

independent. Equation 4 then becomes:



nlBlu/ Ju¢lu(”) - nuBul/ Jy¢ul(y)+nuf4ul
0 0

/ [ By (V)] dv = / [ Budy O (V) + 1y Ay] dv
0 0

nlBluJuqblu - nuBulJV¢lu+nuAul (5)

For a system in thermal equilibrium, the relative level populations follow the Boltzmann

distribution:

and the radiation field J, is described by the Planck Function B, (7T):

51y = 2 o (1) -1 ; @

Substituting Equations 6 and 7 into Equation 5 (which eliminates the line profile function

¢1,) yields, after some rearrangement:

? hv
( 55 A - j—lBlu> {exp <ﬁ> - 1] = "B+ Bu (8)

which implies that:

nglu = guBul (9)
2hv3
Aul TBul (10)

For dipole emission, the spontaneous emission coefficient A,; can be written in terms

of the dipole matrix element |1,|* as:



64143
Ay = ———|ul? 11
ST |1 (11)

3. Radiative Transfer

The radiative transfer equation, ignoring scattering processes (such as those involving

electrons or dust) is defined as follows (see Spitzer (1978) or Draine (2011) for details):

dl,
ds

= —r, 0, + 7, (12)

where

s = Path of propagation along the line of sight
I, = Specific Intensity
k, = Absorption Coefficient
hv
An (i By nyBul) ¢ (13)
g gin
= Ay 11— 0, 14
s (1= ) w0
7, = Emission Coefficient
h
47

Since we generally do not know what the propagation path is for our measured
radiation it is convenient to change independent variables from pathlength s to “optical

depth” 7, which is defined as:

dr, = Kk,ds (16)
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where we use the convention adopted by Draine (2011)! that the radiation propagates in
the direction of increasing optical depth. Switching variables from s to 7, in our radiative

transfer equation (Equation 12) results in the following radiative transfer equation:

dl, = S,dr, — I,dr, (17)

where we define the Source Function S,,:

Jv
== 1
5,=2 (19

By multiplying both sides of Equation 17 by what Draine (2011) has called the
“integrating factor” e™, we can integrate the radiative transfer equation from a starting

point where 7, = 0 and I, = [,,(0) to find that:

e (dl, + I,dr,) = €"S,dr,

eI, —1,00) = / S, dr’
0

I, = L(0)e ™+ /OT exp [— (1, — )] S,dr’ (19)

Equation 19 is a completely general solution to the equation of radiative transfer
(again, assuming that scattering is neglected). It defines the intensity measured by the
observer (I,) as the sum of the background intensity (,(0)) attenuated by the interstellar

medium (exp (—7,)) plus the integrated emission (S,d7’) attenuated by the effective

"Draine (2011) points out that Spitzer (1978) uses the opposite convention, that radiation

propagates in the direction of decreasing optical depth.
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absorption due to the interstellar medium between the point of emission and the observer
(exp [ (1, — 7')]).

For an infinitely large medium the radiation field would be defined as blackbody:
I, = B,. If we further assume that the medium through which the radiation is traveling
is uniform at an excitation temperature 7T,,, a condition sometimes referred to as “local
thermodynamic equilibrium” (LTE), then the source function S, is equivalent to the Planck

Function at temperature T,, (Equation 7): S, = B,(T.;). Equation 19 becomes:

/

I = L(0)e ™ + /0 " exp[= (7 — )] By(To)d+ (20)

if we further assume that T, is a constant, Equation 20 becomes:

I, = 1,(0)exp(—7,) + B,(T.z) [1 — exp(—7,)] (21)

In many cases the specific intensity I, is replaced by the Rayleigh-Jeans Equivalent

Temperature, which is the equivalent temperature of a black body at temperature T:

SES

Jo(T) =

= W (22)

~

which results in a form for the radiative transfer equation which involves the observable

Source Radiation Temperature Tg derived from a differencing measurement:

J,(Tr) = fJu(Tbg) exp(—7,) + fJ,(Tea) [1 — exp(—T,)] (23)

where we have introduced an extra factor f which is the fraction of the spatial resolution

of the measurement filled by the source (sometimes called the “filling factor”). See Ulich &
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Haas (1976) for a complete derivation of the source radiation temperature for the case of a

single antenna position switched measurement.

3.1. The Physical Meaning of Excitation Temperature

The following physical description of the excitation temperature is taken from Harris
et al. (2010). The excitation temperature, T, is a very general concept that describes
an energy density, whether kinetic, radiative, rotational, vibrational, spin, etc.. In
observational molecular spectroscopy T, is the measured quantity; for the rotational
transitions of many molecules, the excitation temperature is the rotational temperature
T,o. A rigorous definition of “thermalized” emission means that T,,; is the same for all
transitions of interest. This does not, though, imply that if a transition is thermalized that
it is also in thermodynamic equilibrium, with rotational temperature equal to the kinetic
temperature of the surrounding Hy molecules. In a rigorous context, the term subthermal
indicates that the excitation temperature T,, for a given transition is below T,, of a
comparison transition from the same ensemble of molecules, without reference to Ty, T, 44,

or any other external energy bath.

4. Column Density

In order to derive physical conditions in the interstellar medium it is often useful to
measure the number of molecules per unit area along the line of sight. This quantity, called
the “column density”, is basically a first-step to deriving basic physical quantities such as
spatial density, molecular abundance, and kinetic temperature. Using the two-energy level
system defined above, we can express the column density as the number of molecules in

energy level u integrated over the pathlength ds:
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N, = / nuds (24)

Since we want to use our molecular spectral line measurements to calculate the
molecular column density, which will ultimately involve the radiative transfer properties
of the molecular spectral line measured, we can use the definition of the optical depth
(Equation 16), the definition of the absorption coefficient x (Equation 15), the Boltzmann
equation for statistical equilibrium (Equation 6), the definition of the spontaneous emission
coefficient A,; (Equation 11), and our definition of the column density (Equation 24) to

relate 7, to the number of molecules in the upper energy state NV,:

2 !
T, = c g_uAul¢l//dS/nl(S,) <1 - glnu<8 ))

8m? g Gunu(s')
g aN
— ANy [ 1 — T2
82 g 1Ny < guNl)

c? hv
- 87'('1/2 |:eXp (k_T) - 1:| Aul¢VNu
83| 47| hv
S T WA 1| g,N
3he | P\ kT Ol

83| 147 ] hv
— - TPl — | —-1| N, 2
/Tydl/ e exp | 1m u (25)

where in the last step we have integrated over the line profile such that [ ¢, = 1.

Rearranging and converting our frequency axis to velocity (dj” = d?”) in Equation 25, we get

an expression for the column density of molecules in the upper transition state (N,):

3h hy -1
N, —_Sh Wy d 2
S [eXp(kT) } [ (26)

At this point we have our basic equation for the number of molecules in the upper

energy state u of our two-level system. In order to relate this to the total molecular column
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density as measured by the intensity of a transition at frequency v, we need to relate the
number of molecules in the upper energy level u (N,) to the total population of all energy
levels in the molecule N;,. Assuming detailed balance at a constant temperature defined

by the excitation temperature T.,, we can relate these two quantities as follows:

Ntot Qrot Eu
= 27
No  gu P (k;T) (27)

where we have introduced the “rotational partition function” @),.;, a quantity that
represents a statistical sum over all rotational energy levels in the molecule (see §6) and
Ju, the degeneracy of the energy level u. Substituting for NV, in Equation 27, the total

molecular column density becomes:

3h Qrot Eu hv !
NO = - 1 I/d 2
TSP g (ka) leXp (kTm> } /T ’ 2

In the following we show how to calculate the level degeneracy g, (§5), the rotational

partition function Q. = ), gi exp (—kE—T’) (§6), the dipole matrix element |u,|* and
associated line strength S and dipole moment yx (such that |u;x|* = Sp?; §7). Derivation of
these terms then allows one to calculate the molecular column density using Equation 28.
Following these discussions we derive several commonly-used approximations to Equation 28,
including optically thin, optically thick, and the Rayleigh-Jeans approximation. We then
close this discussion by working through several examples. We also discuss some minor
issues related to the assumed line profile function (Appendix A), the relationship between
integrated fluxes and brightness temperatures (Appendix B, and the uncertainty associated
with an integrated intensity measurement (Appendix C) in the appendices. In a calculation
which utilizes the column density calculation formalism presented below, Appendix D

describes the standard three-level model for low-temperature NHj excitation often used
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to derive the kinetic temperature from measurements of the (1,1) and (2,2) inversion

transitions of that molecule.

5. Degeneracies

For rotational molecular transitions the total degeneracy for an an energy level of a

transition is given by the product of rotational (g; and gx) and spin (g;) degeneracies:

Gu = 979K 91 (29)

In the following we derive the expressions for these three contributions to the degeneracy of

a molecular energy level.

5.1. Rotational Degeneracy (gj)

The rotational degeneracy associated with the internal quantum number J, g;, exists

in all molecules and is given by:

5.2. K Degeneracy (gk)

The K degeneracy (g ) describes the degeneracy associated with the internal quantum
number K in symmetric and asymmetric top molecules. Because of the opposite symmetry

of the doubly-degenerate levels for which K # 0, gk is defined as follows:



— 15 —

gk = 1 for K=0 and all linear and asymmetric top molecules

= 2 for K+ 0 in symmetric top molecules only (31)

K-level doubling removes the K degeneracy in asymmetric top molecules.

5.3. Nuclear Spin Degeneracy (g;)

The nuclear spin degeneracy g; takes account of the statistical weights associated with
identical nuclei in a nonlinear molecule with symmetry (which most nonlinear molecules
have). For a molecule with no symmetry or hyperfine splitting, each rotational level will

have a nuclear spin degeneracy given by:

n = H(2]i+1)

%

= (2 +1) (32)
g = gnl;clear (33)

where I; represents the spin of the ¢th nucleus, ¢ is the number of identical nuclei,
and gpuciear 18 given in Table 1 for two of the largest classes of molecules found in the
interstellar medium medium: those with two (Cy, symmetry?) and three (Cs, symmetry)

identical nuclei. Symmetry and hyperfine splitting changes g, for all practical cases.

2The number of symmetry states for a molecule are determined by the number of config-
urations within which the wavefunction of the molecule is unchanged with a rotation of 7

about a symmetry axis and a reflection of 7 through that symmetry plane.
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Hyperfine splitting is covered elsewhere in this document, while symmetry considerations
are well-covered by Gordy & Cook (1984) (Chapter I11.4). See also Turner (1991) for a

general discussion applicable to the high-temperature limit.

Keep in mind that if you are only interested in studying one symmetry state (i.e. the
para species) of a molecule, gr = 1. In the following we list some examples of gnucicar

calculations for several molecules.

5.3.1. H2 CO and 03H2

Formaldehyde (HyCO) is a (slightly) prolate asymmetric top molecule, while
Cyclopropenylidene (C3Hs) is an oblate asymmetric top molecule. Both have two opposing
identical H (spin=3) nuclei. The coordinate wavefunction is symmetric/asymmetric for K_;

even/odd, respectively. Therefore, from the two identical spin % nuclei cases in Table 1:

Gnuclear = (2[ + 1)[ =1 for K_; even (34)

= (2I+1)(I+1)=3for Ky odd (35)

Ammonia (NHj3) and Acetonitrile (CH3CN) are symmetric top molecules with three
opposing identical H (spin:%) nuclei. Therefore, from the three identical spin % nuclei cases

in Table 1:
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Table 1. Nuclear Statistical Weight Factors for Cs,, and Cs, Molecules®

Identical Nuclei (¢)®  Spin J K° Inuclear

2 1.3 Any Even (27 +1)I

2 5.2, Any Odd (21 +1)(I+1)

2 0,1,2,... Any Odd (2I+1)(I+1)

2 0,1,2, Any Even (21 +1)I

3 Any Even 3n $(2I +1)(41* + 41 + 3)
3 Any Even or Odd  #3n (21 + 1)(41% + 41)

2Derived from Gordy & Cook (1984), Table 3.2 and 3.3.

b — Ynuclear
91 = Grv1)e

“Where n is an integer.



— 18 —

1
Gnuclear = 5(21 + 1)(4]2 + 47 + 3) =4 for K=3n (36)

= %(2[ +1)(41% 4 41) = 2 for K#£3n (37)

5.8.8. ¢ CsH and SO,

Cyclopropynylidyne (c—C3H) is an oblate(?) asymmetric top molecule with two opposing
identical C (spin=0) nuclei. The coordinate wavefunction is symmetric/asymmetric for K_;

even/odd, respectively. Therefore, from the two identical spin 0 nuclei cases in Table 1:

c-CsH o — (9 +1)I = 0 for K_; even (38)

gnuclear

= (2I+1)(I+1)=1for K4 odd (39)

This indicates that half of the levels are missing (those for which K_; is even).

6. Rotational Partition Functions (Q,.)

For a parcel of gas that exchanges energy with the ambient medium, statistical
mechanics states that the partition function ) which describes the relative population of

states in the gas is given by:

Q= ;gi exp (—kE—T) (40)

Following Gordy & Cook (1984) (chapter 3, section 3), the partition function for

molecules in a gaseous state is a function of the electronic, vibrational, rotational, and
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nuclear spin states of the molecule. Assuming that there are no interactions between these
states, the total partition function for the molecule can be expressed as the product of the

partition functions of these four types of energy states:

Q = QerQrQn (41)

Most stable molecules are in ground electronic singlet Y energy states, making Q). = 1.
For simplicity we will also assume that the molecules are in their ground vibrational state
(Q, = 1). This leaves us with rotational and nuclear partition functions comprising the

total molecular partition function, which we can write as:

Qrot = QTQn
E
= Z 979K g1 €Xp (—%) (42)

JK,I

where the degeneracies g;, g, and g; are described in §5.1, §5.2, §5.3, respectively.
See Turner (1991) for a nice general discussion listing expressions for @, in the

high-temperature limit for a variety of molecules.

In the following we derive the rotational partition function @, for linear, symmetric,

and asymmetric rotor molecules.

6.1. Linear Molecule Rotational Partition Function
For linear molecules:

o g;=2J+1(§5.1)

o g =1(85.2)



— 20 —

e g; = 1 (since linear molecules with rotational spectra are polar and have no center of

symmetry)

which implies that Equation 42 becomes:

Q=327+ Ve (12 ) (13)

J=0
The energy levels for a linear molecule can be described by a multi-term expansion as a

function of J(J + 1) (Jennings et al. 1987):

E;=hByJ(J +1) — DoJ*(J +1)* + HyJ?*(J +1)?

— LoJ*(J + D"+ Mo JP(J +1)° +...) (44)

where By is the rigid rotor rotation constant and Dy, Hy, Lo, and M, are the first- through
fourth-order centrifugal distortion constants for the molecule, respectively, all in MHz.
Using the rigid rotor approximation to the level energies, thus ignoring all terms other than

those linear in J(J+1), Equation 44 becomes:

Ey = hBoJ(J +1) (45)

This allows us to approximate @),.; for diatomic linear molecules as follows:

o0

Qrot ~ Z(?J—{— 1) exp (_%)

J=0

KT 1 1 (hB 4 (hBy\®
h—aﬁgﬂz(ﬁ)*ﬁ(ﬁ) (46)



(from Gordy & Cook (1984) Chapter 3, Equation 3.64). This approximate form is good to
10% for T' > 5 K (Figure 1).

An alternate approximation for linear polyatomic molecules is derived by McDowell

(1988):
kT hBg
— 4
Qrot hBoe p (3k'T> ( 7)

which is reported to be good to 0.01% for @ < 0.2 and is good to 1% for T > 2.8K
(Figure 1). Note that Equation 47 reduces to Equation 46 when expanded using a Taylor

Series.

6.2. Symmetric and Asymmetric Rotor Molecule Rotational Partition

Function

For symmetric rotor molecules:

g7 =2J+1 (§5.1)

gk = 1 for K =0 and 2 for K # 0 in symmetric rotors (§5.2)

grx = 1 for all K in asymmetric rotors

* 91 = iy (See Table 1)

which implies that Equation 42 becomes:

Qrot = Z Z 9x91(2J + 1) exp ( isz() (48)

J=0 K=
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Linear Molecule Rotational Partition Function

20 70
Qrot
Qrot(approx) Gordy & Cook 60
Qrot(approx) McDowell

15F [Qrot - Qrot(approx) McDowell] * 100 150

I
B
o

Qrot (unitless)

w
o
[Qrot - Qrot(approx)] * 100

I
N
o

Tk (K)

Fig. 1.— Rotational partition function calculations for CO using the lowest 51 levels of the
molecule. Shown are @, (Equation 43), Q,.; given by the expansion of Equation 43 provided
by Equation 46, Q). given by the expansion of Equation 43 provided by Equation 47, and

the percentage differences of these to approximations relative to Q..
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Like the energy levels for a linear molecule, the energy levels for a symmetric rotor molecule

can be described by a multi-term expansion as a function of J(J + 1):

Ejx = h(BoJ(J + 1)+ s K* + D;J*(J + 1) + Dy J(J + 1)K* + D, K*

+ Hygo (J + DK + Hyjpo (T + 1)° K + Hjg J*(J +1)° + HigK® +...)  (49)

where sg = Ay — By for a prolate symmetric rotor molecule and sy = Cy — By for an
oblate symmetric rotor, and the other constants represent various terms in the centrifugal
distortion of the molecule. All constants are in MHz. For rigid symmetric rotor molecules,

using the rigid rotor approximation to the level energies:

Ejx =h(BoJ(J + 1) + soK?) (50)

From McDowell (1990) we can then approximate @, for a symmetric rotor molecules as

follows:

(51)

Jmr hBo(4 —m)\ [ kT \** 1 (hBy(1—m)\”
~ 14— (22 =
@rot g P 12kT 1B, 90 kT +

where

m = =2 fora prolate symmetric rotor molecule

= =Y for an oblate symmetric rotor molecule

2

= 9_ for an asymmetric rotor molecule

AoCy
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If we expand the exponential and take only up to first order terms in the expansion in

Equation 51:

Oy m<1+h30(4—m>+ ><k_T)3/2
T o 12kT ") \ hB,
_ mm (KT \Y?
- 7 (i)
1 kT
- ;[m (A 2)

McDowell (1990) notes that this expression is good only for moderate to high kinetic
temperatures. This is also the equation for symmetric rotor partition functions quoted
by Gordy & Cook (1984) (Chapter 3, Equations 3.68 and 3.69). Figure 2 compares Q.
calculated using Equation 48 and the approximate form given by Equation 52 for NH3. In
this example the approximate form for @, (Equation 52) is good to < 17% for Tx > 10K
and < 2.3% for Tx > 50K.

7. Dipole Moment Matrix Elements (|u;;|?) and Line Strengths (S)

The following discussion is derived from the excellent discussion given in Gordy & Cook
(1984), Chapter 11.6. A detailed discussion of line strengths for diatomic molecules can be
found in Tatum (1986). Spectral transitions are induced by interaction of the electric or
magnetic components of the radiation field in space with the electric or magnetic dipole
components fixed in the rotating molecule. The strength of this interaction is called the line
strength S. The matrix elements of the dipole moment with reference to the space-fixed

axes (X,Y,Z) for the rotational eigenfunctions 1, can be written as follows:
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Symmetric Rotor Molecule Rotational Partition Function

16 100
Qrot
14} \ Qrot(approx) Gordy & Cook
[Qrot - Qrot(approx) G&C] * 100
180
12
o
o
—
*
—~ 10 —
[)) | =
g %
. 5
S T
8 g
o 6 140 ©
<
c
4
120

50

Tk (K)

Fig. 2.— Rotational partition function calculations for NH3 using the lowest 51 levels of the
molecule. Shown are Q,,; (Equation 48), @, given by the Equation 52, and the percentage

differences of these to approximations relative to Q..
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[ Sy R e (53)

where ®p, is the direction cosine between the space-fixed axes F=(X,Y,Z) and the
molecule-fixed axes g=(x,y,z). The matrix elements required to calculate line strengths for
linear and symmetric top molecules are known and can be evaluated in a straightforward
manner, but these calculations are rather tedious because of the complex form of the
eigenfunction. Using commutation rules between the angular momentum operators and the
direction cosines ®p,, Cross et al. (1944) derive the nonvanishing direction cosine matrix

elements in the symmetric top representation (J,K,M):

<J7 K7M|(DF9|J/>K/’M/> = <J|(I)F9|J/><J’K|(DF9|J/7K/><J7M|(I)F9|J,7 M/> (54)

The dipole moment matrix element |,|? can then be written as:

= > > WK Mgl K MY (55)

F=X)Y,Z M’

where the sum over g = x,y, 2z is contained in the expression for upr (Equation 53). Table 2
lists the direction cosine matrix element factors in Equation 54 for symmetric rotor and
linear molecules. In the following we give examples of the use of the matrix elements in line

strength calculations

8. Linear and Symmetric Rotor Line Strengths

For all linear and most symmetric top molecules, the permanent dipole moment of the

molecule lies completely along the axis of symmetry of the molecule (1 = p.). This general
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rule is only violated for the extremely-rare “accidentally symmetric top” molecule (where

I, = 1,). For all practical cases, then, Equation 55 becomes:

|:ulu|2::u2 Z Z|<J7K7M|CDFZ|J/7K,7M,>|2 (56)

F=X)Y,Z M’

8.1. (J,K)— (J—1,K) Transitions

Using the matrix element terms listed in the fourth column of Table 2 we can write the

terms which make-up Equation 56 for the case (J, K) — (J — 1, K) as follows:

o = [ ey (S o a5 -] o

Applying these terms to the dipole moment matrix element (Equation 55, which simply
entails squaring each of the three terms in Equation 57 and expanding the £ terms) and

using the definition of |, |* (§7):

S;pﬁ—ﬂ)

J2(4)7 = 1)] {UQ —M2)+%[(J—M)(J—M— 1)+ (J+M)(J+M—-1)]| (58)

Reducing Equation 58 results in the following for a symmetric top transition (J, K) —

(J—1,K):

J2 _ KQ
S = JETTT for (J,K) — (J —1,K) (59)

To derive the equation for a linear molecule transition J — J — 1, simply set K = 0 in

Equation 59.
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8.2. (J,K)— (J,K) Transitions

Using the matrix element terms listed in the third column of Table 2 we can write the

terms which make-up Equation 56 for the case (J, K) — (J, K) as follows:

al? = 12 [ 2K )] {2M) £ 2007 +1) - MM £ 1)) (60)

17T +1

Applying these terms to the dipole moment matrix element (Equation 55) and using the

definition of |, |* (§7):

K2
Freasy:

} [AMP +2[J(J+1) = M(M + 1)+ J(J+1)— M(M —1)]]  (61)

Reducing Equation 61 results in the following for a symmetric top transition (J, K) — (J, K):

2

K
S:mfor (J,K) — (J,K) (62)

9. Symmetry Considerations for Asymmetric Rotor Molecules

The symmetry of the total wavefunction v for a given rotational transition is
determined by the product of the coordinate wavefunction .v,1, and the nuclear spin
wavefunction v,,. These wavefunctions are of two types; Fermions and Bosons. Table 3 lists
the symmetries for the various wavefunctions in both cases for exchange of two identical

nuclei.

Since an asymmetric top can be thought of as belonging to one of two limiting cases,
prolate or oblate symmetric, we need to consider these two cases in the context of the

coordinate wavefunction .1,,.
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Limiting Prolate: We consider the symmetry of the coordinate wavefunctions with respect
to rotation of 180° about the axis of least moment of inertia. Since the coordinate
wavefunction 11,1, depends on this rotation angle & as exp (£iK_1§), it is symmetric
when K_1 is even and antisymmetric when K_1 is odd. HoCO and H5O are limiting

prolate asymmetric top molecules.

Limiting Oblate: We consider the symmetry of the coordinate wavefunctions with respect
to rotation of 180° about the axis of greatest moment of inertia. Since the coordinate
wavefunction 1.1, depends on this rotation angle & as exp (+iK (1§), it is symmetric
when K1 is even and antisymmetric when K.y is odd. NHsD is a limiting oblate

asymmetric top molecule.

10. Hyperfine Structure and Relative Intensities

The relative intensities of the hyperfine transitions of a molecular transition can
be calculated using irreducible tensor methods (see Gordy & Cook (1984) Chapter
15). In this section we derive the relative line strengths for the case of F=J+T
coupling, where the allowed F energy levels are given by the Clebsch-Gordon Series:
F=J+1,J+1-1,..,|J—1I|. The relative intensity is defined such that the sum of the

relative intensities of all hyperfine transitions £’ — F for a given J' — J is equal to one:

Y R(IJF' — IJF)=1. (63)

F'F

The relative line strengths are calculated in terms of a 6-j symbol,

QF +1)(2F' +1) | I F' T

R(IJF — IJF) =

(64)
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With the aid of the 6-j tables found in Edmonds (1960)3, and the properties of the 6-j
symbols that make them invariant to pair-wise permutation of columns, we find that all

single-coupling hyperfine interactions can be described by four 6-j symbols:

Type 1:
a b c " [ s(s+1)(s—2a—1)(s — 2a) ]é
L e—1 b1l (20 — 1)2b(2b + 1)(2¢ — 1)2¢(2¢ + 1)
Type 2:
a b ¢ (1) |:2(8—{—1)(5—2&)(8—26)(8—20—1—1)];
U e—1 bl 26(20 + 1)(2b + 2)(2¢ — 1)2¢(2¢ + 1)
Type 3:
a b c (-1 [(S—Qb—1)(8—2b)(8—20+1)($—26—|—2)};
1 e—1 b+1| (20+1)(2b+2)(2b+ 3)(2¢ — 1)2¢(2¢ + 1)
Type 4:
abecl e 2[00+ 1) +ele+1) —afa+1)]
1 ¢ b [2b(2b + 1)(2b + 2)2¢(2¢ + 1)(2¢ + 2)]2

where s = a + b 4+ ¢. Generalizing this formalism to all single nucleus coupling schemes as

follows:

Z — N F F (65)
X — J F (66)
Z = X+1T (67)

$Many online calculation tools are available that will calculate 6-j symbols. For example,

see hitp://www.svengato.com/sixj. html.
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we find that the relative intensity of a hyperfine transition is given by

(2Z,+1)(22,+1
R — H + l+)

e (R (65)

where the product is taken over all hyperfine interactions which contribute to the transition

and ¢ represents each hyperfine transition. Note that R; has the property that

Table 4 shows the correspondence between all AZ = 1 and AX = =£1 transitions
and their associated 6-j type listed above. In the following sections we provide illustrative
examples of the application of this formalism for calculating relative hyperfine transition

intensities.

11. Approximations to the Column Density Equation

In the following we derive several commonly-use approximations to the column density

equation 28.

11.1. Rayleigh-Jeans Approximation

Assume that hv < kT.,. This reduces the term in [ | in Equation 28 to %, and

reduces the radiative transfer equation (Equation 23) to

J(Tr) = [lJ(Te) = J(Tog)] [1 — exp(=7)] (70)

Tp = flTex — Tbg] [1 — exp(—7)] (71)
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Table 3. Eigenfunction Symmetries for Exchange of Two Identical Nuclei®

Wavefunction”
Statistics Spin (/) Total () Coordinate (¢e1,1,) Spin (¥,) nuclear
Fermi 1.8 A S A (21 +1)1
Fermi 2,3 A A S (2I+1)(I+1)
Bose 0,1,2,... S S S 2l +1)(I+1)
Bose 0,1,2,... S A A (21 +1)1

*From Gordy & Cook (1984), Table 3.2.

PKey: A = Asymmetric (para); S = Symmetric (ortho).

Table 4. Hyperfine Transition to 6-7 Symbol Correspondence

Ly — 2 Xy — X a b ¢ Type
Z4+1—-7 X+1—-X 1 X+1 7Z+1 1
X —-X I X Z+1 2
X-1-X 1 Z X 3
Z— 7 X+1—-X 1 Z X+1 2
X —-X I Z X 4
X-1-X 1 Z X 2
Z-1—-7Z X+1—-X 1 X Z 3
X—-X I X Z 2
X-1-X 1 X Z 1
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Equation 28 then reduces to

3h Qrot Eu k / TR
Ny = — T d
tot 8m3SU2R; 419K g1 P (kTex) hv {f [1 —exp(—7)] +dbg| T0Y

3k Q'rot Eu / TR
= T L d 72
871'3VS,Uz2Ri 9gigKgr P (kTex> |:f [1 - eXp<_T)] - bg‘| e ( )

Assuming that the temperature of the background source (i.e. the cosmic microwave

background radiation) is small in comparison to the molecular excitation temperature

(Tyy < T¢y) in Equation 71, Equation 72 becomes:

N _ 3k Qrot / TI/TR d’U
fot 8m3v S R; ngKgI k:Tw f [1 —exp(—7)]

1.67 x 10MQ,0r T, Trdv(km/s)
ex CcIm (73)
v(GHz)Spu2(Debye) Rigr9xgr kTex f 11— exp(—7)]
11.2. Optically Thin Approximation
Assume 7, < 1. The column density equation (Equation 73) becomes
; 3h Qrot /
Nthzn _ _d
ot STSIP R, 910K g1 (kTez) h !
3k Qrot E
= —d 74
STUSIER; grgr0r T <ka) 7 )

11.3. Optically Thick Approximation

Assume 7, > 1. The column density equation (Equation 73) becomes
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Nthzck _ ro u _ / —td
ot 8m3SuR; 919Kk 91 b (kTea:) hv f ‘
3k Qrot Eu TTR
_ L 75
83w St Ry 919K 91 b (kTex) f ° (%)
— Nthin T (76)

12. Molecular Column Density Calculation Examples

In the following we describe in detail some illustrative calculations of the molecular

column density.

12.1. C¥O

To derive the column density for C**O from a measurement of its J=1 — 0 transition
we use the general equation for molecular column density (28) with the following properties

of the C®0O J=1 — 0 transition:
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Ju
2J,+1
@ = 0.1098 Debye

By = 57635.96 MHz

Gu = 2J,+1
gk = 1 (for linear molecules)
gr = 1 (for linear molecules)
Qrot = Z—g + %(Equation 46)
~ 0.38(T + 0.88)
E, = 527K

v = 109.782182 GHz

which leads to:

3h kT, 1 E hy B
No 18 — cx —_ v —1 / Ud 7
10t (C°0) STRIR, < ¥z + 3> exp (kTem) [exp (kTex> } T,dv  (77)

Assuming that the emission is optically thin (7, < 1; Equation 74), Equation 77 becomes:

ex

E
Nt (C*80) = 4.79 x 10" (T, + 0.88) exp < kT“ ) TgAv(km/s) cm™2 (78)

If we are using integrated fluxes (S, Av) instead of integrated brightness temperatures,

we use Equation B3:
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302 Q t F
No 18 _ TO u VA
10t(C0) 16730, Sp?v? (gugxgz> P ( T> /S ’

T
15
_ 486X 10 (T, +0.89) (k];“)syuymv(kmm m?  (79)

Omaj(asec)l i, (asec)

12.2. CYO

C'0 is a linear molecule with hyperfine structure due to interaction with the electric

quadrupole moment of the 17O (I = g) nucleus. Using the selection rule:

FeJ+1,J+I—1,J+1-2, .., |J—1I

we find that each J-level is split into the hyperfine levels indicated in Table 5 (for the first
five J-levels). Since the selection rules for the single-spin coupling case is, AF = 0, £1,
and AJ = %1, there are 3, 9, and 14 allowed hyperfine transitions for the J =1 — 0,
J=2—1 and J = 3 — 2 transitions, respectively. Figure 3 shows the energy level

structure for the J =1 — 0 and J = 2 — 1 transitions.

We can calculate the relative hyperfine intensities (R;) for the J = 1 — 0 and
J = 2 — 1 transitions using the formalism derived in §10. Using Table 4 we can derive the
relevant R; for the electric quadrupole hyperfine coupling cases (R;(F, J),I = %; Table 6).
Note that in Table 6 we list the relationship between Z and X and their associated quantum
numbers following the assignment mapping equations listed in Equation 67. Figure 4 shows

the synthetic spectra for the CO J =1 — 0 and J = 2 — 1 transitions.

To derive the column density for C'7O from a measurement of its J=1 — 0 transition
we use the general equation for molecular column density (28) with the following properties

of the C17O J=1 -0 F:% — g transition:
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Table 5. Allowed C'70O Hyperfine Energy Levels

J  Number of Energy Levels Allowed F

5
0 1 5
7 5 3
1 3 27272
9 7 5 3 1
2 5 272727272
11 9 7 5 3 1
3 6 27272727202
13 11 9 7 5 3 1
4 7 2727272727272
J F
, 7/2
5/2
/////
//
2 -
¢
—<\‘\§
AN 3/2
\\\\
R
\ \\
N N
. 9/2
\
\
co ‘ 12
, 5/2
1
-
AN /2
N 3/2
0
------- 5/2

Fig. 3.— Electric quadrupole hyperfine energy level structure for the J=0, 1, and 2 levels of
C'"0. Note that the 3 (J =1—0) and 9 (J =2 — 1) allowed transitions are marked with

arrows ordered by increasing frequency from left to right.
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Table 6. Hyperfine Intensities® for C'"O J=1 — 0 and J=2 — 1

F'sF* J = J"a b o Type GG Ave(kHz) 6

&
=
=

GH ) Fof s S0 gy
IRV IS A T w8 -
(5,9 (Lo 2 5 1 2 6 +724 ﬁ s
33 @y § 13 3 4 —867 15 %
2y (21 22 2 6 -323 &2 &
L3 (21 2 2 I 1 8 —213 % s
(5, 1) 21 2 2 & 1 2 G 3
CHRCOEE N : gk
CHECHEE B IR T R
&H @2y 211 3 8 +694  — o =
(2,0) 21) 2 I 2 2 2 +804 NG 2
33 @y 323 1 4 1002 -9 %

*The sum of the relative intensities > , R; = 1.0 for each AJ = 1 transition.
PZ =F and X = J.

“Frequency offsets in kHz relative to 112359.275 and 224714.368 MHz for J =1 — 0

and J = 2 — 1, respectively (from somewhere).



Relative Intensity

Relative Intensity

Fig. 4.— Synthetic
Horizontal axes are offset velocity (top) and frequency (bottom) relative to 112359275.0

and 224714368.0 kHz, respectively. Transition designations in (F',F) format are indicated.
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spectra for the C1"0O J =1 — 0 (top) and 2 — 1 (bottom) transitions.

Overlain in dash is a synthetic 100 kHz gaussian linewidth source spectrum.
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Ju
2J,+1
@ = 0.11032 Debye

By = 56179.99 MHz

g5 = 2J,+1
gk = 1 (for linear molecules)
gr = 1 (for linear molecules)
Qrot ™~ Z—g + % (Equation 46)
~ 0.37(T +0.90)
E, = 540K (80)

which leads to:

3h K., | 1 E hv -
Nuw(CV70) = e 1 : ST
wlC0) = g g, < hB 3) P (k:T) [eXp (kT) } /T v (@)

Assuming that the emission is optically thin (7, < 1; Equation 74), Equation 81 becomes:

Ntot(Cd?O) -

5.07 x 10°° (T, +088) (B,
X
V(GH2)R; P\ T,

) TsAv(km/s) cm™? (82)
where v is the frequency of the hyperfine transition used. For example, if the
F=I — 3 hyperfine was chosen for this calcuation, R; = 5 (See Table 6) and v =

2
112359.275 — 0.293 MHz = 112.358982 GHz. Equation 82 then becomes:

Ey _
Niot(CY7O) = 1.02 x 10" (T, + 0.88) exp <kT ) TsAv(km/s) cm™> (83)
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12.3. No;H*

NoH™ is a multiple spin coupling molecule due to the interaction between its spin and
the quadrupole moments of the two nitrogen nuclei. For a nice detailed description of
the hyperfine levels of the J = 1 — 0 transition see Shirley et al. (2005). Since the outer
N nucleus has a much larger coupling strength than the inner N nucleus, the hyperfine

structure can be determined by a sequential application of the spin coupling:

F, = J+ly

F = F+1Iy

When the coupling from both N nuclei is considered:

e The J = 0 level is split into 3 energy levels,
e The J =1 level is split into 7 energy levels,

e The J = 2 and higher levels are split into 9 energy levels.

Since the selection rules for the single-spin coupling case apply, AF; = 0,+£1, AF =0, 41,
and AJ = +1, there are 15, 77, and 77 forthe J=1—0, J =2 —1,and J =3 — 2
transitions, respectively. Figure 5 shows the energy level structure for the J =1 — 0

transition.

To illustrate the hyperfine intensity calculation for NoH™, we derive the relative
intensities for the J = 1 — 0 transition. Relative intensities, derived from Equations 67, 68,
and Table 4, are listed in Tables 7, 8, and 9. Figure 6 shows the synthetic spectrum for the

NoH™ J =1 — 0 transition.
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Fig. 5.— Energy level structure for the J = 1 — 0 transition of NoH'. Note that of the
15 hyperfine split levels only 7 are observed due to the fact that the hyperfine splitting
of the J=0 level is very small. Grouping of the indicated transitions show the 7 observed

transitions. Transitions are ordered by increasing frequency from left to right.
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Table 7. Outer Nitrogen (F7) Hyperfine Intensities for NgHT J =1 — 0

/ a / a (2F{+1)(2F1+1) .
F1—>F1 J—J a b C Type W 6J Rz(Fl,J>
1 1
(0,1) 10 1 0 1 3 1 L 1
1 1
(1,1) 1Lo) 1 1 1 2 3 -1 1
1 5
(2,1) 10 1 1 2 1 5 1 5
272 =F,and X = J.
Av (km/s)
-5 0 5
0.3 T T T T T T T
k=
+
NH® 1-0 i
h
1
N\ ! l1
1/ ! 1R
2 |
0.2 |- g g . s
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= ' '
17} | vl i
a | 1 |
-8 ! | I '
.E. ) | ‘J \\/I \
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0.1 r ! | ! 1 —
’ | ‘ i ! il
) ! ) ! K
| ! i ! r‘ i
| ! | ! B
< ! I ! |
3 ! | ! T
é.,’ \\ ! \\ ! \,
e \ ! \ ! |
/ \ ! \ / \
J | ! b / !
/ \\ / \ / \
0 | I . . A [
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Fig. 6.— Synthetic spectra for the NgH* J = 1 — 0 transition. Horizontal axes are offset
velocity (top) and frequency (bottom) relative to 93173776.7 kHz. Transition designations in
(F",F:F F) format are indicated. Overlain in dash is a synthetic 100 kHz gaussian linewidth

source spectrum.



— 45 —

Inner Nitrogen (F') Hyperfine Intensities for NoH" J =1 — 0

Table &.

Ri(F, F1)

6

(2F'+1)(2F+1)
(21+1)

Type

C

a

Fll — Fla

F/ N Fa

0,1 1

(1,0)
(1,1)
(1,2)
(0,1)

1

(0,1)

1

(0,1)

1

(1,1)
(1,1)
(1,1)
(1,1)
(1,1)
(1,1)
(2,1)

1

(1,0)
(1,1)
(1,2)
(2,1)

1

1

1

1

(2,2)
(1,0)
(1,1)
(1,2)
(2,1)

— |

[aN]

—|Y

—m o 1_%

1

1

(2,1)

1

(2,1)

1

(2,1)

1

(2,1)

(2,2)

—

1

(2,1)

(3,2)

— Fl-

F and X

aZ:
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Table 9. Hyperfine Intensities* for NoH" J=1 — 0

F'—F° Fl SR J —J Ry(F,J)Ri(F,F) AvP(kHz) Ri(obs)

(0,1) (1,1) (1,0) = —2155.7 =
(2,2) (1,1) (1,0) = —1859.9 =
(2,1) (1,1) (1,0) 108
(1,2) (1,1) (1,0) = —1723.4 1
(1,1) (1,1) (1,0) =
(1,0) (1,1) (1,0) ¥
(2,1) (2,1) (1,0) = —297.1 =
(2,2) (2,1) (1,0) 108
(3,2) (2,1) (1,0) = +0.0 L
(1,1) (2,1) (1,0) oS +189.9 5
(1,2) (2,1) (1,0) G
(1,0) (2.1) (1,0) &
(1,2) (0,1) (1,0) = +2488.3 5
(1,1) (0,1) (1,0) =
(1,0) (0,1) (1,0) 5

*The sum of the relative intensities >, R; = 1.0.
PFrequency offset in kHz relative to 93173.7767 MHz (Caselli et al. 1995).

°Since the J=0 level splitting is very small, only the sum of all transitions

into the J=0 is observed.
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To derive the column density for NoH' we start with the general equation for the total

molecular column density (Equation 28) with:

Ju
S = 57, 11 (see §8.1)

i = 3.37 Debye

By = 46586.88 MHz

R, = (see §10 or, for J=1-0, see Table 9)

Gu = 2J,+1
gk = 1 (for linear molecules)
gr = 1 (for linear molecules)
KT 1
Qrot ™ B + g(Equation 46)
~ 045 (T +0.74)
E, = 44716 K (84)
which leads to:
30 Qror E hv !
—+ _ TO u
N NolT) = s 2 7, O (ksT) [exp (kT) - 1} [rw o

Assuming optically thin emission and and T3, < T¢,, we find that Equation 85 becomes:

6.25 x 101 E,
Ntot(N2H+) = Xp <

m e Wm) TsAv(km/s) cm™> (86)

where v is the frequency of the hyperfine transition used. For example, if the
F=(2,1), J=(1,0) hyperfine was chosen for this calcuation, R; = &= (See Table 9) and
v =93.1737767 GHz. Equation 86 then becomes:
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E.
Niot(NoH') = 2.59 x 10" exp <k‘Tu ) TgAv(km/s) cm™2 (87)
12.4. NH,

Ammonia (NHj) is a symmetric top molecule with three opposing identical H (spin=3)
nuclei. Quantum mechanical tunneling of the N nucleus through the potential plane formed
by the H nuclei leads to inversion splitting of each NH3 energy level. On top of this inversion

splitting the energy levels are split due to two hyperfine interactions:

J—Iy: Coupling between the quadrupole moment of the N nucleus and the electric field
of the H atoms, which splits each energy level into three hyperfine states. For this

interaction the angular momentum vectors are defined as follows: ]51 = J+ I;V.

F1—1: Coupling between the magnetic dipole of the three H nuclei with the weak current
generated by the rotation of the molecule. For this interaction the angular momentum

vectors are defined as follows: F = ﬁl + I;[.

Weaker N-H spin-spin and H-H spin-spin interactions also exist, but only represent small
perturbations of the existing hyperfine energy levels. Note too that “anomalies” between
observed hyperfine transitions intensities and those predicted by quantum mechanics

have been observed (see Stutzki et al. (1984) and Stutzki & Winnewisser (1985)). These

anomalies are likely due to “line overlap” between the hyperfine transitions.

Figure 7 shows the rotational energy level diagram for the first three J-levels of NHs,
while Figure 8 shows the inversion and hyperfine level structure for the (1,1) transition.
(ADD (3,3) and (4,4) AS TIME PERMITS.) Figure 9 shows all NH; energy levels below
600 K. Table 10 lists level energies.
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Table 10. NH; Level Energies®®

Level Energy (K) Level Energy (K)

(0,0,a) 1.14

(1,1,5) 23.21 (1,1,a) 24.35
(1,0,5) 28.64

(2,2,5) 64.20 (2,2,a) 65.34
(2,1,8) 80.47 (2,1,2) 81.58
(2,0,a) 86.99

(3,3,5) 122.97 (3,3,) 124.11
(3,2,5) 150.06 (3,2,a) 151.16
(3,1,5) 166.29 (3,1,a) 167.36
(3,0,5) 171.70

(4,4,5) 199.51 (4,4,2) 200.66
(4,3,5) 237.40 (4,3,) 238.48
(4,2,5) 264.41 (4,2,a) 265.45
(4,1,8) 280.58 (4,1,a) 281.60
(4,0,) 286.98

(5,5.,8) 293.82 (5,5,2) 295.00
(5,4,5) 342.49 (5,4,) 343.58
(5,3,5) 380.23 (5,3,a) 381.25
(5,2,5) 407.12 (5,2,5) 408.10
(5,1,8) 423.23 (5,1,) 424.18
(5,0,8) 428.60

(6,6.5) 405.91 (6,6,2) 407.12
(6,3,5) 551.30 (6,3,2) 552.25
(6,0,2) 600.30

2isted in level energy order per J and inversion-

paired as appropriate.

PSee Poynter & Kakar (1975) for lower-state en-

ergy calculations.
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Rotational Energy Levels of NHs
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Fig. 7— Rotational energy level diagram for the first three J-levels of NHj.
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Fig. 8.— Inversion and hyperfine energy level structure for the (1,1) (top) and (2,2) (bottom)
transitions of NHz. Note that the 18 (1,1) and 24 (2,2) allowed transitions are marked with
arrows ordered by increasing frequency from left to right. Adapted from Ho & Townes

(1983).
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We can calculate the relative hyperfine intensities (R;) for the (1,1) and (2,2) transitions
using the formalism derived in §10. Using Table 4 we can derive the relevant R; for the
quadrupole hyperfine (R;(F},J), I=1; Tables 12, 13, 14, and 15) and magnetic hyperfine
(R;(F, Fy), I:%; Tables 16 and 17) coupling cases. The resultant hyperfine intensities
are listed in Tables 18 and 19 (add (3,K) and (4,K) when available). Note that in the
appropriate tables we list the association between Z and X and their associated quantum
numbers following the assignment mapping equations listed in Equation 67. Figure 10

shows the synthetic spectra for the NH3 (1,1) and (2,2) transitions.

For illustration we can derive the column density equation for a para-NHjz (K0 or 3n)

inversion (AK = 0) transition. For para-NHj inversion transitions:

KQ
Ju(Ju + 1)
@ = 1.468 Debye

R; = (see §10 or, for (1,1) and (2,2), see Tables 18 and 19)
gu = 2J,+1
g = 2for K# 0

2
g = 3 for K# 3n

We can compute the following equation for the molecular column density in NHj3 as derived
from a measurement of a (J,K) (K+#0 or 3n) inversion (AK = 0) transition assuming:
e Summation over all hyperfine levels in a given (J,K) transition (note that ). R; = 1),
e Optically thin emission,

e Unity filling factor (f=1),
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using Equation 74:

3k Ju(Ju + 1) Qrot Eu /
Ni(NH;3) = Trd
tor (N Hy) SRR, K2 gugrgr ¥ \KTe, v

3.34 X 1014JU(JU + 1>Qrot Eu 9
T —
e, o o () [ Tadetmss) en
1.55 x 10MJ,(Jy + 1) Qo E
u u ro " T 9
v(GH2)K?(2J, + DR (kT) / rdv(km/s) cm (88)

12.5. H,CO

Formaldehyde (HoCO) is a slightly asymmetric rotor molecule. The level of asymmetry

in molecules is often described in terms of Ray’s asymmetry parameter x (Ray 1932):

2B-A-C
S e (89)

where A, B, and C are the rotational angular momentum constants for the molecule,
usually expressed in MHz. For HyCO, A = 281970.37 MHz, B = 38835.42558 MHz, and C
= 34005.73031 MHz, which yields k ~ —0.961, which means that HyCO is nearly a prolate
symmetric rotor. The slight asymmetry in HoCO results in limiting prolate (quantum
number K_;) and oblate (quantum number K, ;) symmetric rotor energy levels that are
closely spaced in energy, a feature commonly referred to as “K-doublet splitting”. Figure 11
shows the energy level diagram for HoCO including all energy levels £ < 300 K. In addition
to the asymmetric rotor energy level structure HyCO possess spin-rotation and spin-spin
hyperfine energy level structure. Magnetic dipole interaction between the H nuclei and
rotational motion of the molecule result in spin-rotation hyperfine energy level splitting. For
the 119 — 117 transition the frequency offsets of these hyperfine transitions are dr < 18.5 kHz.

The weaker spin-spin interactions between the nuclei are generally not considered.
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Table 11 lists the frequencies and relative intensities for the spin-rotation hyperfine
transitions of the HyCO 179 — 111, 211 — 212, and 315 — 313 transitions. Note that in Table 11
we list the association between Z and X and their associated quantum numbers following
the assignment mapping equations listed in Equation 67. Figure 12 shows the synthetic
spectra for the NH3 (1,1) and (2,2) transitions. Furthermore, note that the hyperfine
intensities are exactly equal to those calculated for the spin-rotation hyperfine components

of NHj (see §E).

For illustration we can derive the column density equation for a ortho-H,CO (K odd)

K-doublet (AK = 0) transition. For ortho-H,CO transitions:

K2
Ju(Jy + 1)
i = 2.331 Debye

Ri = (See §]_0 or, for 110 — ]_11, 211 — 212, or 312 — 313 see Table 11)
g = 2for K# 0

3
g = 7 for K odd

We can compute the following equation for the molecular column density in HyCO as

derived from a measurement of a (J,K) (K odd) K-doublet (AK = 0) transition assuming:

e Summation over all hyperfine levels in a given (J,K) transition (note that ). R; = 1),
e Optically thin emission,

e Unity filling factor (f=1),

using Equation 74:
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Table 11. F;-1y Hyperfine Frequencies and Intensities for HoCO J=1—-1,2—-2 and 3 -3

K-Doublet transitions

(2F{+1)(2F1 +1)

Fl - m* J —J* AgpP(kHz) a b ¢ Type G D 6j R;(F1,J)
(1,0) (1,1) —18.53 1 1 1 2 1 -1 L
(0,1) (1,1) —1.34 11 1 2 1 -1 1
(2,2) (1,1) —0.35 1 2 1 4 2 ,ﬁ £
(2,1) (1,1) +4.05 1 1 2 2 5 1 5
(1,2) (1,1) +6.48 1 1 2 2 5 % %
(1,1) (1,1) +11.08 1 1 1 4 3 i =
(1,1) (2,2) —20.73 1 1 2 4 3 2%/5 3
(1,2) (2,2) -85 1 2 2 2 5 -+ L
(2,1) (2,2) —0.71 1 2 2 2 5 -+ L
(3,3) (2,2) +0.71 1 3 2 4 4 _ 32%325 292
(3,2) (2,2) +1.42 1 2 3 2 35 < =
(2,3) (2,2) +9.76 1 2 3 2 33 < =
(2,2) (2,2) +10.12 12 2 4 % L 2
(2,3) (3,3) 1 3 3 2 = L 25
(4,3) (3,3) 1 3 4 2 21 L =
(4,4) (3,3) +0.00 1 4 3 4 27 _ 4:{% 45
(3,3) (3,3) —10.4 1 3 3 4 2 o ey
(2,2) (3,3) +23.0 1 2 3 4 2 gjg a0
(3,4) (3,3) 1 3 4 2 21 L 25
(3,2) (3,3) 1 3 3 2 35 -1 2

aZ =F; and X = J.

bFrequency offset in kHz relative to 4829.6596 MHz for 1190 — 111, 14488.65 MHz for 211 — 212, and
28974.85 MHz for 315 — 313.
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3]{7 Ju(Ju + 1) Qrot e Eu /T d
X — v
8m3u’R; K2 gugkgr P kTep f

111 x 10", (Jy + 1)Qror E,
ex
v(GHz)u?(Debye)K?(2J, + 1)R; P

2.04 x 1013JU(JU« + 1>Qrot Eu 2
e Trdv(k -
v(GHz)K?*(2J, + 1)R; (kTex) / rdv(km/s) cm

kTem) / Trdv(km /s) cm

-2

(90)
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A. Line Profile Functions

For a Gaussian profile the function ¢(v) is given by

1 (v —1p)?
) = 2ro P [ 20?2
where
2
e (7 )
and

This manuscript was prepared with the AAS IATEX macros v5.2.

(A1)

(A2)
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/ o(v)dv = 1

The Gaussian profile has a FWHM given by (in both frequency and velocity):

2 2kT, 2
Avp = =0 {IHQ( Mk —I—’UQ):|

C

2kT, 2
Avp = 2 [an ( Mk —i—vQ)]
and a peak value given by:
2v1n 2
¢(y)peak ==

\/7_TAVD
2v1In 2¢
VTAvp

(A3)

(A4)

(A5)

(A6)

(A7)

If one uses peak values instead of integrating over a Gaussian profile to derive column

densities, one must make the following correction:

/In 2
(Ntat)Gauss =2 7<Nt0t>peak

B. Integrated Fluxes Versus Brightness Temperatures

All calculations in this document assume the use of integrated brightness temperatures

(J TpAv). If one uses integrated fluxes ([ S,Av), the total molecular column density

assuming optically-thin emission (Equation 74) is modified by using the relationship

between flux density and brightness temperature:
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Qk‘TBV2
S, = 5 Q, (B1)
and becomes
D\* 3¢& Qrot B,
N, “u) [ S,A B2
fot <2Rs) 167T35[L2V3 (gug[{gnuclear) P (kT) / ! ( )
3C2 Qrot EU
_ Zu) [ g A B3
1671'3955/1/2’/3 (gugKgnuclear> b (kT> / ‘ ( )

C.

Integrated Intensity Uncertainty

For cases where you do not have a calculation from a fit to the integrated intensity of a

spectral line, one can use the following estimate given a measurement of the baseline RMS

and line profile properties.

/Tdv

N
Av, Z T,
n=1

I

...where Aw, is the spectral velocity channel width, T, is a spectral channel value, and the

line spans N channels. The statistical uncertainty of the integrated line intensity is given

by:
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...where I have used the fact that we know the velocity channel width (oa,, = 0). Using

Equation C2 in Equation C3, and assuming that all of the channel noise values are equal:

N
Z of = Noi. (C4)
n=1

...we get...

o? = Nor(Av,.)? (C5)
o1 = VNorAuv, (C6)

= AvlmeAUcUT (07)

...where we have used the fact that the spectral line width Awv;,. = NAwv, to get the last

expression for o;.

D. Excitation and Kinetic Temperature

This section is drawn from Appendix A of Mangum et al. (1992). If the metastable
states in NHj3 are coupled only through collisions and the populations in the upper states
in each K-ladder (J#K) can be neglected, the populations in the metastable states are
related through the Boltzmann equation. In molecular clouds, though, AK = 1 collisions
across K-ladders will deplete metastable states in favor of their next lower J metastable
states. Therefore, for example, collisional de—excitation of the (2,2) transition will result in
an increase in the population of the (2,1) state, followed by quick radiative relaxation of the
(2,1) state into the (1,1) state. This implies that an excitation temperature, T,,(J', K'; J, K)
relating the populations in the (J/,K’) and (J,K) states, n(J’,K’) and n(J,K), may be

derived. From the Boltzmann equation,
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n(J, K" g(J, K’ AE(J, K'; J, K)

_ D1
(LK)  g(L.K) V| T.(J, K JK) (D1)

and the ratio of level (J',K’) and (J,K) column densities (assuming hv < kT, (J', K'; J, K))
for the (J,K) and (J',K’) transitions

N(J', K'Y J(J + DK>7(J, K)Av(J, K"

= D2
N(J,K) J(J+1)(K"?7r(J, K)Av(J, K) (D2)
and the fact that in a homogeneous molecular cloud
n(J K'Y N(J K')
== D
W(IK) N 9
we find that
g(J', K') AE(J,K'; J K) J(J + 1)K (J, K Av(J', K') (D4)
= —exp |— =
g K) TP T TR (KL K) | T T+ DK (LK) A, K)
Using
F,F’ F,F'
7(J,K)=|>_ Rpp/Y  Rn|7(J, K,m) (D5)

where R is the relative intensity for a quadrupole (F,F}) or main (m) hyperfine component

and
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FF ja¥ad
Z RF,F’/ Z Rm

1.0
&t
= 2.000 for the (1,1) transition (see Tables 12 or 18)
1.0
T35 108 T 20
= 1.256 for the (2,K) transitions (see Tables 13 or 19)
54
43

Ik

1.0
a5 121 | 40
13 T a2 T I
216
193
= 1.119 for the (3,K) transitions (see Table 14)

1.0
968 | 361

35
2175 T 1200 1 144
2200

2057
= 1.070 for the (4,K) transitions (see Table 15)

for the (1,1) and (2,2) transitions, we can relate the total optical depth 7(J,K) to the optical
depth in the main hyperfine component 7(J,K,m), noting that for NHz g(J,K) = 2.J, + 1,
and solving Equation D4 for T,,(J', K'; J, K) we find that

T..(J,K';J.K) = —AE(J,K';J K)
(2J + 1)J'(J + ) K2Lpor(J, K m)Av(J, KN !
1 (D6)
2J" + 1)J(J + 1) (K )21 x7(J, K, m)Av(J, K)

Using
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TB<J> K7 m) _ 1 - CeXp [_T(‘]? K7 m)]
Tp(J', K',m) 1—exp|[-7(J, K',m)]

(D7)

which assumes equal excitation temperatures and beam filling factors in the (J,K) and

(J/,K') transitions. Solving Equation D7 for 7(J', K',m) yields

Te(J', K',m)

"K' =—In|l-—
T<J’ 7m) " TB(‘]a Ku m)

{1—exp[-7(J,K,m)]} (D8)

Substituting Equation D8 into Equation D6

T..(J,K';J,K)=—-AE(J ,K'; J, K)

X {ln

(2J + 1)JI(J/ + 1)K21J/K/AU(J/, K/)
27+ 1)J(J + DK 7 (J, K, m)Av(J, K)

X In (1 _ (' Km) {1—exp|-7(J, K, m)]})] } (D9)

TB(J7 Ka m)

For (J/)K') = (2,2) and (J,K) = (1,1), Equation D9 becomes

0.283A0(2,2)
7(1,1,m)Av(1,1)

T.0(2,2:1,1) = —41.5{111[
-1

x In (1 — % {1 —exp[-7(1,1, m)]})] } (D10)

To derive the gas kinetic temperature from 7,,(2,2; 1, 1), one uses statistical equilibrium
(noting that only collisional processes are allowed between the different K-ladders), detailed
balance, and the Boltzmann equation to calculate Ty from T..(J', K’; J, K). Assuming

that the populations in the (1,1) and (2,2) transitions are much greater than that in the
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higher lying levels of para-NHj3 and that the population of the non—metastable (2,1) level
is negligible in comparison to that in the (1,1) level, we can use this “three—level model” of

NH; to analytically derive an expression relating 7.,(2,2;1,1) and Ty

1 C(2,2;2,1) {g(l,l)

LG22l AE(2,2;1,1)} } {9(2,2) exp [_MH (D11)

92,2) P {Tex@, 21,1) | [ Lo(1,1) Tw

where C(J', K'; J, K) is the collisional excitation rate at temperature Tk between levels

(J,K") and (J,K). Equation D11 can be re—written as

_ Tk C(2,2;2,1) B
T..(2,2:1,1) {1+ <41.5) In {H 0(2’2;171)} } Tk =0 (D12)

Solutions of Equation D12 give T for a measured T,,(2,2;1,1).

E. NH; Frequency and Relative Intensity Calculation Tables
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Table 12.  J-Iy Hyperfine Intensities for NH3(1,1)

Fl—-F* J—J* a b ¢ Type wg}# 6i  Ri(F,J)
(0,1) 1,1y 1 1 1 2 1 1 1
(2,1) 1,y 11 2 2 5 L 5
(2,2) 1,y 1 2 1 4 2 S 5
(1,1) 1L,y 1 1 1 4 3 1 1
(1,2) 1Ly 11 2 2 5 L 5
(1,0) (1L,y 1 1 1 2 1 -1 !

Table 13. J-Iy Hyperfine Intensities for NH3(2,K)

Fll — Fla J — J* a b c Type (2F1’—(|-211)J(311;1+1) 6J Ri(Fl, J)

(1,2) 22 1 2 2 2 5 ~L L
(3,2) 22) 1 2 3 2 35 1 T
(3,3) 22 1 3 2 4 49 —22 5
(2,2) 22 1 2 2 4 2 L 2
(L1) 22 1 1 2 4 3 S s
(2,3) 22) 1 2 3 2 3 1 T
(2,1) 22 1 2 2 2 5 ~L L
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J-In Hyperfine Intensities for NH3(3,K)

Fll — Fla J/ — J? a b C Type % 6J Ri(Fl, J)
(2,3) 33 1 3 3 2 35 _L 5
(4,3) 33) 1 3 4 2 21 L 3
(4.4) 33 1 4 3 4 27 i a5
(3,3) 33) 1 3 3 4 19 u L2t
(2,2) 33 1 2 3 4 2 —22 il
(374> (373) 1 3 4 2 21 2_18 %
(3,2) 33 1 3 3 2 8 —L 5

a7 =F,and X = J
Table 15. J-Iy Hyperfine Intensities for NH3(4,K)

F — Fi? J' —J* a b ¢ Type (2Fl/'("21}+1;1'~'1) 6j Ri(Fl, J)
(3,4) 44) 1 4 4 2 21 —L =z
(5.4) (44) 1 4 5 ) 33 1 1
(5,5) 44) 1 5 4 4 121 VA
(4,4) 44 1 4 4 4 27 el 6L
(3,3) 44 1 3 4 4 49 - E:l
(4,5) 44) 1 4 5 2 33 L ey
(4,3) 44 1 4 4 2 21 .l =
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Table 16. F;-Iy Hyperfine Frequencies and Intensities for NH3(1,1)

a

F' - F* I - [? Avgp® (kHz)

i

S

—1568.487

(0,1)

[a\llap}

1%

—1526.950

(0,1)

™I

—

i

S

aella}

—623.306 2

(2,1)

—N

oella}

oo

12

—590.338

(2,1)

0
=

—580.921

(2,1)

N

—|o

—i|©

—I&

1
10v/3

12

Tal[a)]

— |

—24.394

18
50

3
10v2

—lo T[]

—©O  [1~|,n
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F and X = Fi.

aZ:

bFrequency offset in kHz relative to 23694.495487 kHz (Kukolich 1967, Table I).
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Table 17. F;-Ix Hyperfine Frequencies and Intensities for NH3(2,2)

F'—F* F/ > F* Avgp®(kHz) a b ¢ Type % 6] R,(F, Fy)
3 3 1 3 1 1
3,9 (1,2) —2099.027 i 3 2 2 8 Ve %
3 5 1 5 1 3
2,9 (1,2) —2058.265 i 2 3 1 12 —5or 3
3.2 (1,2) —2053.464 i 2 3 1 4 575 1
Z,%) (3,2) —1297.079 i 3 I 1 24 7\/% 2
2,3 (3,2) —1296.096 i 3 3 1 12 Ve &
55 1 5 1 1
3,9 (3,2) —1255.335 i 3 3 2 18 5775 =
3.3 (1,1) —44.511 i 1 3 2 4 -3 3
2,3 (2,2) —41.813 i 2 3 2 12 STV 7%
(£, (3,3) —41.444 13 1 2 24 S L
(2,9 (2,2) ~1.051 13 2 4 18 i K
2,3 (2,2) —1.051 1 3 2 4 8 ~Tovs %
77 1 7 3v3 27
(£, 9 (33) +0.309 1 I 3 4 32 = z
5 5 1 5 V10 20
2,9 (3,3) +0.309 i 2 3 4 18 -yl 2
3 3 1 3 V5 5
2,3 (1,1) +1.054 I ! 4 8 22 5
3,3 (1,1) +1.054 3 3 1 4 2 -1 2
3 5 1 5 1 1
(5,3) (2,2) +39.710 5 2 3 2 12 T 10v3 25
CD (3,3) +42.045 i 3 I 2 24 ~Tave a5
1 3 1 3 1 1
€3 (1,1) +46.614 i1 3 2 4 -1 i
5 5 1 5 1 1
(3,2 (2,3) +1254.584 i 5 3 2 18 3975 =
3 5 1 5 1 6
3,9 (2,3) +1295.345 i 3 3 1 12 e £
5 7 1 7 1 12
3. (2,3) +1296.328 i 3 I 1 24 v 2
3 1 1 3 1 1
.5 (2,1) +2053.464 i 2 3 1 4 e 1
5 3 1 5 1 3
(3,%) (2,1) +2058.265 i 2 3 1 12 N 2
3 3 1 3 1 1
3.%) (2,1) +2099.027 i 3 2 2 8 Ve =

27 = F and X = F1.

PFrequency offset in kHz relative to 23722633.335 kHz (Kukolich 1967, Table IT)
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Table 18. Hyperfine Intensities for NH3(1,1)

Fl'sF F —-FR J—J Ri(F,J)Ri(F F)»°

(3:3) (0,1) (1,1) 7
(3.2 (0.1) (1) Z
¢, 1) (L) T
(2.2 1) (11) L
2.2 2.1) (1,1) 08
(3.4 (L1) (L) 2
2.4 (L) (L1) =
(2.2 (2,2) (L) &
(2,2 (2,2) (L1) 2
(3.2 (11) (1) s
(3,9 (22) (1) e
2.2 (1) (1) T
2.9 22) (1,1) %
(3.2 (12) (11) .
2.2 (12) (L) =
2.9 (12) (1,1) v
(3.3 (1,0) (L) =
2.4 (1,0) (1) Z

aCompare with Kukolich (1967) Table IX after scaling
R; by (2Ig +1)(2In +1) = 6 (Kukolich (1967) lists unnor-

malized line strengths in their Table IX).

PNote that the sum of the relative intensities >, R; =
1.0.
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Table 19. Hyperfine Intensities for NH3(2,2)

F'—F F/—F J—J Ri(F,J)Ri(F F)»"

(2.2 (1,2) (2.2) =5
(2,3 (12) (2.2) 105
(3.2 (1,2) (2,2) &
(.9 (32) (22) %5
3.3 (32) (22) X
2.9 (32) (2:2) 75
2.1 (11) 22) &
(2.2 22) 22) s
(£.9 (3.3) (2.2) 345
(2.9 (2.2) (2.2) L
(2.2 (2,2) (2.2) L
(.5 (3.3) (2,2) £
(2,9 (33) (2.2) i
2.2 (1,1) (2,2) V3
3.5 (L1) 22) &
2.9 22) 22) s
3.0 (3,3) 22) o=
(3.2 (1,1) 22) &
2.9 (2.3) (2.2) e
2.9 (2.3) (2.2) o
3.5 (2,3) (2.2) e
2.4 2.1) (2.2) &
(3.2 2.1) (2.2) 105
2.9 (2,1) (2,2) 355

aCompare with Kukolich (1967) Table IX after scaling
R; by (2Ig +1)(2Iy +1) = 6 (Kukolich (1967) lists unnor-

malized line strengths in their Table IX).

PNote that the sum of the relative intensities > Ri =
1.0.



