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ABSTRACT

We tell you how to calculate molecular column density.

Subject headings: ISM: molecules



– 3 –

Contents

1 Introduction 5

2 Radiative and Collisional Excitation of Molecules 5

3 Radiative Transfer 8

3.1 The Physical Meaning of Excitation Temperature . . . . . . . . . . . . . . . 11

4 Column Density 11

5 Degeneracies 14

5.1 Rotational Degeneracy (gJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 K Degeneracy (gK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 Nuclear Spin Degeneracy (gI) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3.1 H2CO and C3H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3.2 NH3 and CH3CN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3.3 c–C3H and SO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Rotational Partition Functions (Qrot) 18

6.1 Linear Molecule Rotational Partition Function . . . . . . . . . . . . . . . . . 19

6.2 Symmetric and Asymmetric Rotor Molecule Rotational Partition Function . 21

7 Dipole Moment Matrix Elements (|µjk|2) and Line Strengths (S) 24



– 4 –

8 Linear and Symmetric Rotor Line Strengths 26

8.1 (J,K) → (J− 1,K) Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.2 (J,K) → (J,K) Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 Symmetry Considerations for Asymmetric Rotor Molecules 29

10 Hyperfine Structure and Relative Intensities 30

11 Approximations to the Column Density Equation 32

11.1 Rayleigh-Jeans Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11.2 Optically Thin Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11.3 Optically Thick Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 34

12 Molecular Column Density Calculation Examples 35

12.1 C18O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

12.2 C17O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12.3 N2H
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

12.4 NH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12.5 H2CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Line Profile Functions 62

B Integrated Fluxes Versus Brightness Temperatures 63



– 5 –

C Integrated Intensity Uncertainty 64

D Excitation and Kinetic Temperature 65

E NH3 Frequency and Relative Intensity Calculation Tables 69

1. Introduction

This document is meant to be a reference for those scientists who need to calculate

molecular spectral line column densities. We have organized the document such that some

basic background information is first provided to allow a contextural foundation to be

lain for further calculations. This foundation includes a basic understanding of radiative

transfer and molecular degeneracy, line strength, and hyperfine structure.

2. Radiative and Collisional Excitation of Molecules

When the energy levels of a molecule are in statistical equilibrium, the rate of

transitions populating a given energy level is balanced by the rate of transitions which

depopulate that energy level. For a molecule with multiple energy levels statistical

equilibrium can be written as:

ni

∑
j

Rij =
∑

j

njRji (1)

where ni and nj are the populations of the energy levels i and j and Rij and Rji are

transition rates between levels i and j. The transition rates contain contributions from:

• Spontaneous radiative excitation (Aij)
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• Stimulated radiative excitation and de-excitation (Rij ≡ niBij

∫∞
0
Jνφij(ν)dν)

• Collisional excitation and de-excitation (ncolliderCij)

where φν(ν) is the line profile function and Jν is defined as the integral of the specific

intensity Iν over the source of emission:

Jν ≡
1

4π

∫
IνdΩ (2)

Our statistical equilibrium equation then becomes:

ni

[∑
j

(
ncolliderCij +Bij

∫ ∞

0

Jνφij(ν)dν

)
+

∑
j<i

Aij

]
=

∑
j

nj

(
ncolliderCij +Bji

∫ ∞

0

Jνφji(ν)dν

)
+

∑
j>i

njAji (3)

For a two-level system with i defined as the lower energy level l and j defined as the upper

energy level u,
∑

j<iAij = 0 and the statistical equilibrium equation (Equation 3) becomes:

nl

(
ncolliderClu +Blu

∫ ∞

0

Jνφlu(ν)dν

)
=

nu

(
ncolliderCul +Bul

∫ ∞

0

Jνφul(ν)dν + Aul

)
(4)

At this point we can derive the Einstein relations Aul, Bul, and Blu by considering

only radiative excitation (Clu = Cul = 0) and complete redistribution over the line profile

(φul(ν) = φlu(ν)). Physically, this means that emitted and absorbed photons are completely

independent. Equation 4 then becomes:
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nlBlu

∫ ∞

0

Jνφlu(ν) = nuBul

∫ ∞

0

Jνφul(ν) + nuAul∫ ∞

0

[nlBluJνφlu(ν)] dν =

∫ ∞

0

[nuBulJνφlu(ν) + nuAul] dν

nlBluJνφlu = nuBulJνφlu + nuAul (5)

For a system in thermal equilibrium, the relative level populations follow the Boltzmann

distribution:

nu

nl

≡ gu

gl

exp

(
− hν
kT

)
(6)

and the radiation field Jν is described by the Planck Function Bν(T ):

Bν(T ) ≡ 2hν3

c2

[
exp

(
hν

kT

)
− 1

]−1

(7)

Substituting Equations 6 and 7 into Equation 5 (which eliminates the line profile function

φlu) yields, after some rearrangement:

(
c2

2hν3
Aul −

gl

gu

Blu

) [
exp

(
hν

kT

)
− 1

]
=
gl

gu

Blu +Bul (8)

which implies that:

glBlu = guBul (9)

Aul =
2hν3

c2
Bul (10)

For dipole emission, the spontaneous emission coefficient Aul can be written in terms

of the dipole matrix element |µlu|2 as:
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Aul ≡
64π4ν3

3hc3
|µlu|2 (11)

3. Radiative Transfer

The radiative transfer equation, ignoring scattering processes (such as those involving

electrons or dust) is defined as follows (see Spitzer (1978) or Draine (2011) for details):

dIν
ds

= −κνIν + jν (12)

where

s ≡ Path of propagation along the line of sight

Iν ≡ Specific Intensity

κν ≡ Absorption Coefficient

=
hν

4π
(nlBlu − nuBul)φν (13)

=
c2

8πν2

gu

gl

nlAul

(
1− glnu

gunl

)
φν (14)

jν ≡ Emission Coefficient

=
hν

4π
Aulnu (15)

Since we generally do not know what the propagation path is for our measured

radiation it is convenient to change independent variables from pathlength s to “optical

depth” τν , which is defined as:

dτν ≡ κνds (16)
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where we use the convention adopted by Draine (2011)1 that the radiation propagates in

the direction of increasing optical depth. Switching variables from s to τν in our radiative

transfer equation (Equation 12) results in the following radiative transfer equation:

dIν = Sνdτν − Iνdτν (17)

where we define the Source Function Sν :

Sν ≡
jν
κν

(18)

By multiplying both sides of Equation 17 by what Draine (2011) has called the

“integrating factor” eτν , we can integrate the radiative transfer equation from a starting

point where τν = 0 and Iν = Iν(0) to find that:

eτν (dIν + Iνdτν) = eτνSνdτν

eτνIν − Iν(0) =

∫ τ ′

0

Sνdτ
′

Iν = Iν(0)e−τν +

∫ τ ′

0

exp [− (τν − τ ′)]Sνdτ
′ (19)

Equation 19 is a completely general solution to the equation of radiative transfer

(again, assuming that scattering is neglected). It defines the intensity measured by the

observer (Iν) as the sum of the background intensity (Iν(0)) attenuated by the interstellar

medium (exp (−τν)) plus the integrated emission (Sνdτ
′) attenuated by the effective

1Draine (2011) points out that Spitzer (1978) uses the opposite convention, that radiation

propagates in the direction of decreasing optical depth.
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absorption due to the interstellar medium between the point of emission and the observer

(exp [− (τν − τ ′)]).

For an infinitely large medium the radiation field would be defined as blackbody:

Iν = Bν . If we further assume that the medium through which the radiation is traveling

is uniform at an excitation temperature Tex, a condition sometimes referred to as “local

thermodynamic equilibrium” (LTE), then the source function Sν is equivalent to the Planck

Function at temperature Tex (Equation 7): Sν = Bν(Tex). Equation 19 becomes:

Iν = Iν(0)e−τν +

∫ τ ′

0

exp [− (τν − τ ′)]Bν(Tex)dτ
′ (20)

if we further assume that Tex is a constant, Equation 20 becomes:

Iν = Iν(0) exp(−τν) +Bν(Tex) [1− exp(−τν)] (21)

In many cases the specific intensity Iν is replaced by the Rayleigh-Jeans Equivalent

Temperature, which is the equivalent temperature of a black body at temperature T:

Jν(T ) ≡
hν
k

exp
(

hν
kT

)
− 1

(22)

which results in a form for the radiative transfer equation which involves the observable

Source Radiation Temperature TR derived from a differencing measurement:

Jν(TR) = fJν(Tbg) exp(−τν) + fJν(Tex) [1− exp(−τν)] (23)

where we have introduced an extra factor f which is the fraction of the spatial resolution

of the measurement filled by the source (sometimes called the “filling factor”). See Ulich &
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Haas (1976) for a complete derivation of the source radiation temperature for the case of a

single antenna position switched measurement.

3.1. The Physical Meaning of Excitation Temperature

The following physical description of the excitation temperature is taken from Harris

et al. (2010). The excitation temperature, Tex, is a very general concept that describes

an energy density, whether kinetic, radiative, rotational, vibrational, spin, etc.. In

observational molecular spectroscopy Tex is the measured quantity; for the rotational

transitions of many molecules, the excitation temperature is the rotational temperature

Trot. A rigorous definition of “thermalized” emission means that Trot is the same for all

transitions of interest. This does not, though, imply that if a transition is thermalized that

it is also in thermodynamic equilibrium, with rotational temperature equal to the kinetic

temperature of the surrounding H2 molecules. In a rigorous context, the term subthermal

indicates that the excitation temperature Trot for a given transition is below Trot of a

comparison transition from the same ensemble of molecules, without reference to TK , Trad,

or any other external energy bath.

4. Column Density

In order to derive physical conditions in the interstellar medium it is often useful to

measure the number of molecules per unit area along the line of sight. This quantity, called

the “column density”, is basically a first-step to deriving basic physical quantities such as

spatial density, molecular abundance, and kinetic temperature. Using the two-energy level

system defined above, we can express the column density as the number of molecules in

energy level u integrated over the pathlength ds:
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Nu ≡
∫
nuds (24)

Since we want to use our molecular spectral line measurements to calculate the

molecular column density, which will ultimately involve the radiative transfer properties

of the molecular spectral line measured, we can use the definition of the optical depth

(Equation 16), the definition of the absorption coefficient κ (Equation 15), the Boltzmann

equation for statistical equilibrium (Equation 6), the definition of the spontaneous emission

coefficient Aul (Equation 11), and our definition of the column density (Equation 24) to

relate τν to the number of molecules in the upper energy state Nu:

τν =
c2

8πν2

gu

gl

Aulφν

∫
ds′nl(s

′)

(
1− glnu(s

′)

gunl(s′)

)
=

c2

8πν2

gu

gl

AulφνNl

(
1− glNu

guNl

)
=

c2

8πν2

[
exp

(
hν

kT

)
− 1

]
AulφνNu

=
8π3ν|µlu|2

3hc

[
exp

(
hν

kT

)
− 1

]
φνNu∫

τνdν =
8π3ν|µlu|2

3hc

[
exp

(
hν

kT

)
− 1

]
Nu (25)

where in the last step we have integrated over the line profile such that
∫
φν = 1.

Rearranging and converting our frequency axis to velocity (dν
ν

= dv
c
) in Equation 25, we get

an expression for the column density of molecules in the upper transition state (Nu):

Nu =
3h

8π3|µlu|2

[
exp

(
hν

kT

)
− 1

]−1 ∫
τνdv (26)

At this point we have our basic equation for the number of molecules in the upper

energy state u of our two-level system. In order to relate this to the total molecular column
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density as measured by the intensity of a transition at frequency ν, we need to relate the

number of molecules in the upper energy level u (Nu) to the total population of all energy

levels in the molecule Ntot. Assuming detailed balance at a constant temperature defined

by the excitation temperature Tex, we can relate these two quantities as follows:

Ntot

Nu

=
Qrot

gu

exp

(
Eu

kTex

)
(27)

where we have introduced the “rotational partition function” Qrot, a quantity that

represents a statistical sum over all rotational energy levels in the molecule (see §6) and

gu, the degeneracy of the energy level u. Substituting for Nu in Equation 27, the total

molecular column density becomes:

Ntot =
3h

8π3|µlu|2
Qrot

gu

exp

(
Eu

kTex

) [
exp

(
hν

kTex

)
− 1

]−1 ∫
τνdv (28)

In the following we show how to calculate the level degeneracy gu (§5), the rotational

partition function Qrot ≡
∑

i gi exp
(
− Ei

kT

)
(§6), the dipole matrix element |µlu|2 and

associated line strength S and dipole moment µ (such that |µjk|2 ≡ Sµ2; §7). Derivation of

these terms then allows one to calculate the molecular column density using Equation 28.

Following these discussions we derive several commonly-used approximations to Equation 28,

including optically thin, optically thick, and the Rayleigh-Jeans approximation. We then

close this discussion by working through several examples. We also discuss some minor

issues related to the assumed line profile function (Appendix A), the relationship between

integrated fluxes and brightness temperatures (Appendix B, and the uncertainty associated

with an integrated intensity measurement (Appendix C) in the appendices. In a calculation

which utilizes the column density calculation formalism presented below, Appendix D

describes the standard three-level model for low-temperature NH3 excitation often used
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to derive the kinetic temperature from measurements of the (1,1) and (2,2) inversion

transitions of that molecule.

5. Degeneracies

For rotational molecular transitions the total degeneracy for an an energy level of a

transition is given by the product of rotational (gJ and gK) and spin (gI) degeneracies:

gu ≡ gJgKgI (29)

In the following we derive the expressions for these three contributions to the degeneracy of

a molecular energy level.

5.1. Rotational Degeneracy (gJ)

The rotational degeneracy associated with the internal quantum number J , gJ , exists

in all molecules and is given by:

gJ = 2Ju + 1 (30)

5.2. K Degeneracy (gK)

The K degeneracy (gK) describes the degeneracy associated with the internal quantum

number K in symmetric and asymmetric top molecules. Because of the opposite symmetry

of the doubly-degenerate levels for which K 6= 0, gK is defined as follows:
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gK = 1 for K=0 and all linear and asymmetric top molecules

= 2 for K 6= 0 in symmetric top molecules only (31)

K-level doubling removes the K degeneracy in asymmetric top molecules.

5.3. Nuclear Spin Degeneracy (gI)

The nuclear spin degeneracy gI takes account of the statistical weights associated with

identical nuclei in a nonlinear molecule with symmetry (which most nonlinear molecules

have). For a molecule with no symmetry or hyperfine splitting, each rotational level will

have a nuclear spin degeneracy given by:

gn =
∏

i

(2Ii + 1)

= (2I + 1)σ (32)

gI ≡ gnuclear

gn

(33)

where Ii represents the spin of the ith nucleus, σ is the number of identical nuclei,

and gnuclear is given in Table 1 for two of the largest classes of molecules found in the

interstellar medium medium: those with two (C2v symmetry2) and three (C3v symmetry)

identical nuclei. Symmetry and hyperfine splitting changes gn for all practical cases.

2The number of symmetry states for a molecule are determined by the number of config-

urations within which the wavefunction of the molecule is unchanged with a rotation of π

about a symmetry axis and a reflection of π through that symmetry plane.
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Hyperfine splitting is covered elsewhere in this document, while symmetry considerations

are well-covered by Gordy & Cook (1984) (Chapter III.4). See also Turner (1991) for a

general discussion applicable to the high-temperature limit.

Keep in mind that if you are only interested in studying one symmetry state (i.e. the

para species) of a molecule, gI = 1. In the following we list some examples of gnuclear

calculations for several molecules.

5.3.1. H2CO and C3H2

Formaldehyde (H2CO) is a (slightly) prolate asymmetric top molecule, while

Cyclopropenylidene (C3H2) is an oblate asymmetric top molecule. Both have two opposing

identical H (spin=1
2
) nuclei. The coordinate wavefunction is symmetric/asymmetric for K−1

even/odd, respectively. Therefore, from the two identical spin 1
2

nuclei cases in Table 1:

gnuclear = (2I + 1)I = 1 for K−1 even (34)

= (2I + 1)(I + 1) = 3 for K−1 odd (35)

5.3.2. NH3 and CH3CN

Ammonia (NH3) and Acetonitrile (CH3CN) are symmetric top molecules with three

opposing identical H (spin=1
2
) nuclei. Therefore, from the three identical spin 1

2
nuclei cases

in Table 1:
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Table 1. Nuclear Statistical Weight Factors for C2v and C3v Moleculesa

Identical Nuclei (σ)b Spin J Kc gnuclear

2 1
2
, 3

2
, . . . Any Even (2I + 1)I

2 1
2
, 3

2
, . . . Any Odd (2I + 1)(I + 1)

2 0, 1, 2, . . . Any Odd (2I + 1)(I + 1)

2 0, 1, 2, . . . Any Even (2I + 1)I

3 Any Even 3n 1
3
(2I + 1)(4I2 + 4I + 3)

3 Any Even or Odd 6= 3n 1
3
(2I + 1)(4I2 + 4I)

aDerived from Gordy & Cook (1984), Table 3.2 and 3.3.

bgI ≡ gnuclear

(2I+1)σ

cWhere n is an integer.
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gnuclear =
1

3
(2I + 1)(4I2 + 4I + 3) = 4 for K=3n (36)

=
1

3
(2I + 1)(4I2 + 4I) = 2 for K6=3n (37)

5.3.3. c–C3H and SO2

Cyclopropynylidyne (c–C3H) is an oblate(?) asymmetric top molecule with two opposing

identical C (spin=0) nuclei. The coordinate wavefunction is symmetric/asymmetric for K−1

even/odd, respectively. Therefore, from the two identical spin 0 nuclei cases in Table 1:

gc−C3H
nuclear = (2I + 1)I = 0 for K−1 even (38)

= (2I + 1)(I + 1) = 1 for K−1 odd (39)

This indicates that half of the levels are missing (those for which K−1 is even).

6. Rotational Partition Functions (Qrot)

For a parcel of gas that exchanges energy with the ambient medium, statistical

mechanics states that the partition function Q which describes the relative population of

states in the gas is given by:

Q =
∑

i

gi exp

(
− Ei

kT

)
(40)

Following Gordy & Cook (1984) (chapter 3, section 3), the partition function for

molecules in a gaseous state is a function of the electronic, vibrational, rotational, and
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nuclear spin states of the molecule. Assuming that there are no interactions between these

states, the total partition function for the molecule can be expressed as the product of the

partition functions of these four types of energy states:

Q = QeQvQrQn (41)

Most stable molecules are in ground electronic singlet Σ energy states, making Qe = 1.

For simplicity we will also assume that the molecules are in their ground vibrational state

(Qv = 1). This leaves us with rotational and nuclear partition functions comprising the

total molecular partition function, which we can write as:

Qrot ≡ QrQn

=
∑
J,K,I

gJgKgI exp

(
−EJK

kT

)
(42)

where the degeneracies gJ , gK , and gI are described in §5.1, §5.2, §5.3, respectively.

See Turner (1991) for a nice general discussion listing expressions for Qrot in the

high-temperature limit for a variety of molecules.

In the following we derive the rotational partition function Qrot for linear, symmetric,

and asymmetric rotor molecules.

6.1. Linear Molecule Rotational Partition Function

For linear molecules:

• gJ = 2J + 1 (§5.1)

• gK = 1 (§5.2)
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• gI = 1 (since linear molecules with rotational spectra are polar and have no center of

symmetry)

which implies that Equation 42 becomes:

Qrot =
∞∑

J=0

(2J + 1) exp

(
−EJ

kT

)
(43)

The energy levels for a linear molecule can be described by a multi-term expansion as a

function of J(J + 1) (Jennings et al. 1987):

EJ = h(B0J(J + 1)−D0J
2(J + 1)2 +H0J

3(J + 1)3

− L0J
4(J + 1)4 +M0J

5(J + 1)5 + ...) (44)

where B0 is the rigid rotor rotation constant and D0, H0, L0, and M0 are the first- through

fourth-order centrifugal distortion constants for the molecule, respectively, all in MHz.

Using the rigid rotor approximation to the level energies, thus ignoring all terms other than

those linear in J(J+1), Equation 44 becomes:

EJ = hB0J(J + 1) (45)

This allows us to approximate Qrot for diatomic linear molecules as follows:

Qrot '
∞∑

J=0

(2J + 1) exp

(
−hB0J(J + 1)

kT

)
' kT

hB0

+
1

3
+

1

15

(
hB0

kT

)
+

4

315

(
hB0

kT

)2

(46)
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(from Gordy & Cook (1984) Chapter 3, Equation 3.64). This approximate form is good to

10% for T > 5K (Figure 1).

An alternate approximation for linear polyatomic molecules is derived by McDowell

(1988):

Qrot '
kT

hB0

exp

(
hB0

3kT

)
(47)

which is reported to be good to 0.01% for hB0

kT
. 0.2 and is good to 1% for T > 2.8K

(Figure 1). Note that Equation 47 reduces to Equation 46 when expanded using a Taylor

Series.

6.2. Symmetric and Asymmetric Rotor Molecule Rotational Partition

Function

For symmetric rotor molecules:

• gJ = 2J + 1 (§5.1)

• gK = 1 for K = 0 and 2 for K 6= 0 in symmetric rotors (§5.2)

• gK = 1 for all K in asymmetric rotors

• gI = gnuclear

(2I+1)σ (See Table 1)

which implies that Equation 42 becomes:

Qrot =
∞∑

J=0

J∑
K=−J

gKgI(2J + 1) exp

(
−EJK

kT

)
(48)
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Fig. 1.— Rotational partition function calculations for CO using the lowest 51 levels of the

molecule. Shown areQrot (Equation 43), Qrot given by the expansion of Equation 43 provided

by Equation 46, Qrot given by the expansion of Equation 43 provided by Equation 47, and

the percentage differences of these to approximations relative to Qrot.
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Like the energy levels for a linear molecule, the energy levels for a symmetric rotor molecule

can be described by a multi-term expansion as a function of J(J + 1):

EJK = h(B0J(J + 1) + s0 ∗K2 +DjJ
2(J + 1)2 +DjkJ(J + 1)K2 +DkK

4

+HjkkJ(J + 1)K4 +HjjkJ
2(J + 1)2K2 +Hj6J

3(J + 1)3 +Hk6K
6 + ...) (49)

where s0 ≡ A0 − B0 for a prolate symmetric rotor molecule and s0 ≡ C0 − B0 for an

oblate symmetric rotor, and the other constants represent various terms in the centrifugal

distortion of the molecule. All constants are in MHz. For rigid symmetric rotor molecules,

using the rigid rotor approximation to the level energies:

EJK = h
(
B0J(J + 1) + s0K

2
)

(50)

From McDowell (1990) we can then approximate Qrot for a symmetric rotor molecules as

follows:

Qrot '
√
mπ

σ
exp

(
hB0(4−m)

12kT

) (
kT

hB0

)3/2
[
1 +

1

90

(
hB0(1−m)

kT

)2

+ ...

]
(51)

where

m =
B0

A0

for a prolate symmetric rotor molecule

=
B0

C0

for an oblate symmetric rotor molecule

=
B2

0

A0C0

for an asymmetric rotor molecule
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If we expand the exponential and take only up to first order terms in the expansion in

Equation 51:

Qrot '
√
mπ

σ

(
1 +

hB0(4−m)

12kT
+ ...

) (
kT

hB0

)3/2

'
√
mπ

σ

(
kT

hB0

)3/2

' 1

σ

[
mπ

(
kT

hB0

)3
]1/2

(52)

McDowell (1990) notes that this expression is good only for moderate to high kinetic

temperatures. This is also the equation for symmetric rotor partition functions quoted

by Gordy & Cook (1984) (Chapter 3, Equations 3.68 and 3.69). Figure 2 compares Qrot

calculated using Equation 48 and the approximate form given by Equation 52 for NH3. In

this example the approximate form for Qrot (Equation 52) is good to . 17% for TK > 10K

and . 2.3% for TK > 50K.

7. Dipole Moment Matrix Elements (|µjk|2) and Line Strengths (S)

The following discussion is derived from the excellent discussion given in Gordy & Cook

(1984), Chapter II.6. A detailed discussion of line strengths for diatomic molecules can be

found in Tatum (1986). Spectral transitions are induced by interaction of the electric or

magnetic components of the radiation field in space with the electric or magnetic dipole

components fixed in the rotating molecule. The strength of this interaction is called the line

strength S. The matrix elements of the dipole moment with reference to the space-fixed

axes (X,Y,Z) for the rotational eigenfunctions ψr can be written as follows:
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∫
ψ∗rµFψ

′
rdτ =

∑
g

µg

∫
ψ∗rΦFgψ

′
rdτ (53)

where ΦFg is the direction cosine between the space-fixed axes F=(X,Y,Z) and the

molecule-fixed axes g=(x,y,z). The matrix elements required to calculate line strengths for

linear and symmetric top molecules are known and can be evaluated in a straightforward

manner, but these calculations are rather tedious because of the complex form of the

eigenfunction. Using commutation rules between the angular momentum operators and the

direction cosines ΦFg, Cross et al. (1944) derive the nonvanishing direction cosine matrix

elements in the symmetric top representation (J,K,M):

〈J,K,M |ΦFg|J ′, K ′,M ′〉 = 〈J |ΦFg|J ′〉〈J,K|ΦFg|J ′, K ′〉〈J,M |ΦFg|J ′,M ′〉 (54)

The dipole moment matrix element |µlu|2 can then be written as:

|µlu|2 =
∑

F=X,Y,Z

∑
M ′

|〈J,K,M |µF |J ′, K ′,M ′〉|2 (55)

where the sum over g = x, y, z is contained in the expression for µF (Equation 53). Table 2

lists the direction cosine matrix element factors in Equation 54 for symmetric rotor and

linear molecules. In the following we give examples of the use of the matrix elements in line

strength calculations

8. Linear and Symmetric Rotor Line Strengths

For all linear and most symmetric top molecules, the permanent dipole moment of the

molecule lies completely along the axis of symmetry of the molecule (µ = µz). This general
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rule is only violated for the extremely-rare “accidentally symmetric top” molecule (where

Ix = Iy). For all practical cases, then, Equation 55 becomes:

|µlu|2 = µ2
∑

F=X,Y,Z

∑
M ′

|〈J,K,M |ΦFz|J ′, K ′,M ′〉|2 (56)

8.1. (J,K) → (J− 1,K) Transitions

Using the matrix element terms listed in the fourth column of Table 2 we can write the

terms which make-up Equation 56 for the case (J,K) → (J − 1, K) as follows:

|µlu|2 = µ2

[
(J2 −K2)1/2

J(4J2 − 1)1/2

]{
(J2 −M2)1/2 +

(
i± 1

2

)
[(J ∓M)(J ∓M − 1)]1/2

}
(57)

Applying these terms to the dipole moment matrix element (Equation 55, which simply

entails squaring each of the three terms in Equation 57 and expanding the ± terms) and

using the definition of |µlu|2 (§7):

S =

[
(J2 −K2)

J2(4J2 − 1)

] [
(J2 −M2) +

1

2
[(J −M)(J −M − 1) + (J +M)(J +M − 1)]

]
(58)

Reducing Equation 58 results in the following for a symmetric top transition (J,K) →

(J − 1, K):

S =
J2 −K2

J(2J + 1)
for (J,K) → (J − 1, K) (59)

To derive the equation for a linear molecule transition J → J − 1, simply set K = 0 in

Equation 59.
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8.2. (J,K) → (J,K) Transitions

Using the matrix element terms listed in the third column of Table 2 we can write the

terms which make-up Equation 56 for the case (J,K) → (J,K) as follows:

|µlu|2 = µ2

[
2K

4J(J + 1)

]{
(2M)± 2 [J(J + 1)−M(M ± 1)]1/2

}
(60)

Applying these terms to the dipole moment matrix element (Equation 55) and using the

definition of |µlu|2 (§7):

S =

[
K2

4J2(J + 1)2

] [
4M2 + 2 [J(J + 1)−M(M + 1) + J(J + 1)−M(M − 1)]

]
(61)

Reducing Equation 61 results in the following for a symmetric top transition (J,K) → (J,K):

S =
K2

J(J + 1)
for (J,K) → (J,K) (62)

9. Symmetry Considerations for Asymmetric Rotor Molecules

The symmetry of the total wavefunction ψ for a given rotational transition is

determined by the product of the coordinate wavefunction ψeψvψr and the nuclear spin

wavefunction ψn. These wavefunctions are of two types; Fermions and Bosons. Table 3 lists

the symmetries for the various wavefunctions in both cases for exchange of two identical

nuclei.

Since an asymmetric top can be thought of as belonging to one of two limiting cases,

prolate or oblate symmetric, we need to consider these two cases in the context of the

coordinate wavefunction ψeψvψr.
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Limiting Prolate: We consider the symmetry of the coordinate wavefunctions with respect

to rotation of 180◦ about the axis of least moment of inertia. Since the coordinate

wavefunction ψeψvψr depends on this rotation angle ξ as exp (±iK−1ξ), it is symmetric

when K−1 is even and antisymmetric when K−1 is odd. H2CO and H2O are limiting

prolate asymmetric top molecules.

Limiting Oblate: We consider the symmetry of the coordinate wavefunctions with respect

to rotation of 180◦ about the axis of greatest moment of inertia. Since the coordinate

wavefunction ψeψvψr depends on this rotation angle ξ as exp (±iK+1ξ), it is symmetric

when K+1 is even and antisymmetric when K+1 is odd. NH2D is a limiting oblate

asymmetric top molecule.

10. Hyperfine Structure and Relative Intensities

The relative intensities of the hyperfine transitions of a molecular transition can

be calculated using irreducible tensor methods (see Gordy & Cook (1984) Chapter

15). In this section we derive the relative line strengths for the case of ~F = ~J + ~I

coupling, where the allowed F energy levels are given by the Clebsch-Gordon Series:

F = J + I, J + I − 1, ..., |J − I|. The relative intensity is defined such that the sum of the

relative intensities of all hyperfine transitions F ′ → F for a given J ′ → J is equal to one:

∑
F ′F

Ri(IJ
′F ′ → IJF ) = 1. (63)

The relative line strengths are calculated in terms of a 6-j symbol,

Ri(IJ
′F ′ → IJF ) =

(2F + 1)(2F ′ + 1)

(2I + 1)

I F ′ J ′

I J F


2

. (64)
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With the aid of the 6-j tables found in Edmonds (1960)3, and the properties of the 6-j

symbols that make them invariant to pair-wise permutation of columns, we find that all

single-coupling hyperfine interactions can be described by four 6-j symbols:

Type 1: a b c

1 c− 1 b− 1

 = (−1)s

[
s(s+ 1)(s− 2a− 1)(s− 2a)

(2b− 1)2b(2b+ 1)(2c− 1)2c(2c+ 1)

] 1
2

Type 2: a b c

1 c− 1 b

 = (−1)s

[
2(s+ 1)(s− 2a)(s− 2b)(s− 2c+ 1)

2b(2b+ 1)(2b+ 2)(2c− 1)2c(2c+ 1)

] 1
2

Type 3: a b c

1 c− 1 b+ 1

 = (−1)s

[
(s− 2b− 1)(s− 2b)(s− 2c+ 1)(s− 2c+ 2)

(2b+ 1)(2b+ 2)(2b+ 3)(2c− 1)2c(2c+ 1)

] 1
2

Type 4: a b c

1 c b

 = (−1)s+1 2 [b(b+ 1) + c(c+ 1)− a(a+ 1)]

[2b(2b+ 1)(2b+ 2)2c(2c+ 1)(2c+ 2)]
1
2

where s = a + b + c. Generalizing this formalism to all single nucleus coupling schemes as

follows:

Z 7→ N F Fi (65)

X 7→ J Fi (66)

~Z = ~X + ~I (67)

3Many online calculation tools are available that will calculate 6-j symbols. For example,

see http://www.svengato.com/sixj.html.
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we find that the relative intensity of a hyperfine transition is given by

Ri =
HF∏ (2Zu + 1)(2Zl + 1)

(2I + 1)
{6− j}2 (68)

where the product is taken over all hyperfine interactions which contribute to the transition

and i represents each hyperfine transition. Note that Ri has the property that

∑
i

Ri = 1 (69)

Table 4 shows the correspondence between all ∆Z = ±1 and ∆X = ±1 transitions

and their associated 6-j type listed above. In the following sections we provide illustrative

examples of the application of this formalism for calculating relative hyperfine transition

intensities.

11. Approximations to the Column Density Equation

In the following we derive several commonly-use approximations to the column density

equation 28.

11.1. Rayleigh-Jeans Approximation

Assume that hν � kTex. This reduces the term in [ ] in Equation 28 to hν
kTex

, and

reduces the radiative transfer equation (Equation 23) to

J(TR) = f [J(Tex)− J(Tbg)] [1− exp(−τ)] (70)

TR = f [Tex − Tbg] [1− exp(−τ)] (71)
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Table 3. Eigenfunction Symmetries for Exchange of Two Identical Nucleia

Wavefunctionb

Statistics Spin (I) Total (ψ) Coordinate (ψeψvψr) Spin (ψn) gnuclear

Fermi 1
2
, 3

2
, . . . A S A (2I + 1)I

Fermi 1
2
, 3

2
, . . . A A S (2I + 1)(I + 1)

Bose 0, 1, 2, . . . S S S (2I + 1)(I + 1)

Bose 0, 1, 2, . . . S A A (2I + 1)I

aFrom Gordy & Cook (1984), Table 3.2.

bKey: A = Asymmetric (para); S = Symmetric (ortho).

Table 4. Hyperfine Transition to 6-j Symbol Correspondence

Zu → Zl Xu → Xl a b c Type

Z + 1 → Z X + 1 → X I X+1 Z+1 1

X → X I X Z+1 2

X − 1 → X I Z X 3

Z → Z X + 1 → X I Z X+1 2

X → X I Z X 4

X − 1 → X I Z X 2

Z − 1 → Z X + 1 → X I X Z 3

X → X I X Z 2

X − 1 → X I X Z 1
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Equation 28 then reduces to

Ntot =
3h

8π3Sµ2Ri

Qrot

gJgKgI

exp

(
Eu

kTex

)
k

hν

∫ [
TR

f [1− exp(−τ)]
+ Tbg

]
τνdv

=
3k

8π3νSµ2Ri

Qrot

gJgKgI

exp

(
Eu

kTex

) ∫ [
TR

f [1− exp(−τ)]
+ Tbg

]
τνdv (72)

Assuming that the temperature of the background source (i.e. the cosmic microwave

background radiation) is small in comparison to the molecular excitation temperature

(Tbg � Tex) in Equation 71, Equation 72 becomes:

Ntot =
3k

8π3νSµ2Ri

Qrot

gJgKgI

exp

(
Eu

kTex

) ∫
τνTR

f [1− exp(−τ)]
dv

' 1.67× 1014Qrot

ν(GHz)Sµ2(Debye)RigJgKgI

exp

(
Eu

kTex

) ∫
τνTRdv(km/s)

f [1− exp(−τ)]
cm−2 (73)

11.2. Optically Thin Approximation

Assume τν � 1. The column density equation (Equation 73) becomes

N thin
tot =

3h

8π3Sµ2Ri

Qrot

gJgKgI

exp

(
Eu

kTex

)
k

hν

∫
TR

f
dv

=
3k

8π3νSµ2Ri

Qrot

gJgKgI

exp

(
Eu

kTex

) ∫
TR

f
dv (74)

11.3. Optically Thick Approximation

Assume τν � 1. The column density equation (Equation 73) becomes
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N thick
tot =

3h

8π3Sµ2Ri

Qrot

gJgKgI

exp

(
Eu

kTex

)
k

hν

∫
τTR

f
dv

=
3k

8π3νSµ2Ri

Qrot

gJgKgI

exp

(
Eu

kTex

) ∫
τTR

f
dv (75)

= N thin
tot

τ

1− exp(−τ)
(76)

12. Molecular Column Density Calculation Examples

In the following we describe in detail some illustrative calculations of the molecular

column density.

12.1. C18O

To derive the column density for C18O from a measurement of its J=1 − 0 transition

we use the general equation for molecular column density (28) with the following properties

of the C18O J=1− 0 transition:
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S =
Ju

2Ju + 1

µ = 0.1098 Debye

B0 = 57635.96 MHz

gu = 2Ju + 1

gK = 1 (for linear molecules)

gI = 1 (for linear molecules)

Qrot ' kT

hB
+

1

3
(Equation 46)

' 0.38 (T + 0.88)

Eu = 5.27 K

ν = 109.782182 GHz

which leads to:

Ntot(C
18O) =

3h

8π3µ2JuRi

(
kTex

hB
+

1

3

)
exp

(
Eu

kTex

) [
exp

(
hν

kTex

)
− 1

]−1 ∫
τνdv (77)

Assuming that the emission is optically thin (τν � 1; Equation 74), Equation 77 becomes:

Ntot(C
18O) = 4.79× 1013 (Tex + 0.88) exp

(
Eu

kTex

)
TB∆v(km/s) cm−2 (78)

If we are using integrated fluxes (Sν∆v) instead of integrated brightness temperatures,

we use Equation B3:
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Ntot(C
18O) =

3c2

16π3ΩsSµ2ν3

(
Qrot

gugKgI

)
exp

(
Eu

kT

) ∫
Sν∆v

=
4.86× 1015 (Tex + 0.88)

θmaj(asec)θmin(asec)
exp

(
Eu

kTex

)
Sν(Jy)∆v(km/s) cm−2 (79)

12.2. C17O

C17O is a linear molecule with hyperfine structure due to interaction with the electric

quadrupole moment of the 17O (I = 5
2
) nucleus. Using the selection rule:

F = J + I, J + I − 1, J + I − 2, ..., |J − I|

we find that each J-level is split into the hyperfine levels indicated in Table 5 (for the first

five J-levels). Since the selection rules for the single-spin coupling case is, ∆F = 0,±1,

and ∆J = ±1, there are 3, 9, and 14 allowed hyperfine transitions for the J = 1 → 0,

J = 2 → 1, and J = 3 → 2 transitions, respectively. Figure 3 shows the energy level

structure for the J = 1 → 0 and J = 2 → 1 transitions.

We can calculate the relative hyperfine intensities (Ri) for the J = 1 → 0 and

J = 2 → 1 transitions using the formalism derived in §10. Using Table 4 we can derive the

relevant Ri for the electric quadrupole hyperfine coupling cases (Ri(F, J), I = 5
2
; Table 6).

Note that in Table 6 we list the relationship between Z and X and their associated quantum

numbers following the assignment mapping equations listed in Equation 67. Figure 4 shows

the synthetic spectra for the C17O J = 1 → 0 and J = 2 → 1 transitions.

To derive the column density for C17O from a measurement of its J=1 − 0 transition

we use the general equation for molecular column density (28) with the following properties

of the C17O J=1− 0 F=7
2
− 5

2
transition:
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Table 5. Allowed C17O Hyperfine Energy Levels

J Number of Energy Levels Allowed F

0 1 5
2

1 3 7
2
, 5

2
, 3

2

2 5 9
2
, 7

2
, 5

2
, 3

2
, 1

2

3 6 11
2
, 9

2
, 7

2
, 5

2
, 3

2
, 1

2

4 7 13
2
, 11

2
, 9

2
, 7

2
, 5

2
, 3

2
, 1

2

C

J

1

0

2

7/2

5/2

3/2

9/2

1/2

5/2

7/2

3/2

5/2

F

O
17

Fig. 3.— Electric quadrupole hyperfine energy level structure for the J=0, 1, and 2 levels of

C17O. Note that the 3 (J = 1 → 0) and 9 (J = 2 → 1) allowed transitions are marked with

arrows ordered by increasing frequency from left to right.
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Table 6. Hyperfine Intensitiesa for C17O J=1 → 0 and J=2 → 1

F ′ → F b J ′ → Jb a b c Type (2F ′+1)(2F+1)
(2I+1)

∆νc (kHz) 6j Ri(F, J)

(3
2
, 5

2
) (1,0) 5

2
0 5

2
3 4 −501 − 1

3
√

2
2
9

(7
2
, 5

2
) (1,0) 5

2
1 7

2
1 8 −293 − 1

3
√

2
4
9

(5
2
, 5

2
) (1,0) 5

2
5
2

1 2 6 +724 1
3
√

2
3
9

(3
2
, 5

2
) (2,1) 5

2
1 5

2
3 4 −867 1

10
1
25

(5
2
, 5

2
) (2,1) 5

2
5
2

2 2 6 −323 − 4
√

2
15
√

7
64
525

(7
2
, 5

2
) (2,1) 5

2
2 7

2
1 8 −213

√
3

2
√

35
6
35

(9
2
, 7

2
) (2,1) 5

2
2 9

2
1 40

3
−169 − 1

2
√

10
1
3

(1
2
, 3

2
) (2,1) 5

2
1 3

2
3 4

3
−154 − 1

2
√

5
1
15

(3
2
, 3

2
) (2,1) 5

2
3
2

2 2 8
3

+358
√

7
10
√

2
7
75

(5
2
, 7

2
) (2,1) 5

2
1 7

2
3 8 +694 − 1

6
√

14
1
63

(7
2
, 7

2
) (2,1) 5

2
7
2

2 2 32
3

+804 1
4
√

7
2
21

(5
2
, 3

2
) (2,1) 5

2
2 5

2
1 4 +902 −

√
7

15
√

2
14
225

aThe sum of the relative intensities
∑

iRi = 1.0 for each ∆J = 1 transition.

bZ = F and X = J .

cFrequency offsets in kHz relative to 112359.275 and 224714.368MHz for J = 1 → 0

and J = 2 → 1, respectively (from somewhere).
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Fig. 4.— Synthetic spectra for the C17O J = 1 → 0 (top) and 2 → 1 (bottom) transitions.

Horizontal axes are offset velocity (top) and frequency (bottom) relative to 112359275.0

and 224714368.0 kHz, respectively. Transition designations in (F′,F) format are indicated.

Overlain in dash is a synthetic 100 kHz gaussian linewidth source spectrum.
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S =
Ju

2Ju + 1

µ = 0.11032 Debye

B0 = 56179.99 MHz

gJ = 2Ju + 1

gK = 1 (for linear molecules)

gI = 1 (for linear molecules)

Qrot ' kT

hB
+

1

3
(Equation 46)

' 0.37 (T + 0.90)

Eu = 5.40 K (80)

which leads to:

Ntot(C
17O) =

3h

8π3µ2JuRi

(
kTex

hB
+

1

3

)
exp

(
Eu

kTex

) [
exp

(
hν

kTex

)
− 1

]−1 ∫
τνdv (81)

Assuming that the emission is optically thin (τν � 1; Equation 74), Equation 81 becomes:

Ntot(C
17O) =

5.07× 1015 (Tex + 0.88)

ν(GHz)Ri

exp

(
Eu

kTex

)
TB∆v(km/s) cm−2 (82)

where ν is the frequency of the hyperfine transition used. For example, if the

F=7
2
− 5

2
hyperfine was chosen for this calcuation, Ri = 4

9
(See Table 6) and ν =

112359.275− 0.293 MHz = 112.358982GHz. Equation 82 then becomes:

Ntot(C
17O) = 1.02× 1014 (Tex + 0.88) exp

(
Eu

kTex

)
TB∆v(km/s) cm−2 (83)
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12.3. N2H
+

N2H
+ is a multiple spin coupling molecule due to the interaction between its spin and

the quadrupole moments of the two nitrogen nuclei. For a nice detailed description of

the hyperfine levels of the J = 1 → 0 transition see Shirley et al. (2005). Since the outer

N nucleus has a much larger coupling strength than the inner N nucleus, the hyperfine

structure can be determined by a sequential application of the spin coupling:

~F1 = ~J + ~IN

~F = ~F1 + ~IN

When the coupling from both N nuclei is considered:

• The J = 0 level is split into 3 energy levels,

• The J = 1 level is split into 7 energy levels,

• The J = 2 and higher levels are split into 9 energy levels.

Since the selection rules for the single-spin coupling case apply, ∆F1 = 0,±1, ∆F = 0,±1,

and ∆J = ±1, there are 15, ??, and ?? for the J = 1 → 0, J = 2 → 1, and J = 3 → 2

transitions, respectively. Figure 5 shows the energy level structure for the J = 1 → 0

transition.

To illustrate the hyperfine intensity calculation for N2H
+, we derive the relative

intensities for the J = 1 → 0 transition. Relative intensities, derived from Equations 67, 68,

and Table 4, are listed in Tables 7, 8, and 9. Figure 6 shows the synthetic spectrum for the

N2H
+ J = 1 → 0 transition.
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+

J F1

0
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2

0

1

Outer Nitrogen Coupling

3

2

1

2

1

0

2

1

0

F

Inner Nitrogen Coupling

1
N2H

Fig. 5.— Energy level structure for the J = 1 → 0 transition of N2H
+. Note that of the

15 hyperfine split levels only 7 are observed due to the fact that the hyperfine splitting

of the J=0 level is very small. Grouping of the indicated transitions show the 7 observed

transitions. Transitions are ordered by increasing frequency from left to right.
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Table 7. Outer Nitrogen (F1) Hyperfine Intensities for N2H
+ J = 1 → 0

F ′1 → F1
a J ′ → Ja a b c Type

(2F ′
1+1)(2F1+1)

(2I+1)
6j Ri(F1, J)

(0,1) (1,0) 1 0 1 3 1 1
3

1
9

(1,1) (1,0) 1 1 1 2 3 −1
3

1
3

(2,1) (1,0) 1 1 2 1 5 1
3

5
9

aZ = F1 and X = J .

Fig. 6.— Synthetic spectra for the N2H
+ J = 1 → 0 transition. Horizontal axes are offset

velocity (top) and frequency (bottom) relative to 93173776.7 kHz. Transition designations in

(F′,F′1:F,F1) format are indicated. Overlain in dash is a synthetic 100 kHz gaussian linewidth

source spectrum.
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Table 8. Inner Nitrogen (F ) Hyperfine Intensities for N2H
+ J = 1 → 0

F ′ → F a F ′1 → F1
a a b c Type (2F ′+1)(2F+1)

(2I+1)
6j Ri(F, F1)

(1,0) (0,1) 1 0 1 3 1 1
3

1
9

(1,1) (0,1) 1 1 1 2 3 −1
3

1
3

(1,2) (0,1) 1 1 2 1 5 1
3

5
9

(0,1) (1,1) 1 1 1 2 1 1
3

1
9

(1,0) (1,1) 1 1 1 2 1 −1
3

1
9

(1,1) (1,1) 1 1 1 4 3 1
6

1
12

(1,2) (1,1) 1 1 2 2 5 1
6

5
36

(2,1) (1,1) 1 1 2 2 5 1
6

5
36

(2,2) (1,1) 1 2 1 4 25
3

− 1
2
√

5
5
12

(1,0) (2,1) 1 2 1 1 1 1
3

1
9

(1,1) (2,1) 1 1 2 2 3 1
6

1
12

(1,2) (2,1) 1 1 2 3 5 1
30

1
180

(2,1) (2,1) 1 2 2 1 5 − 1
2
√

5
1
4

(2,2) (2,1) 1 2 2 2 25
3

− 1
10

1
12

(3,2) (2,1) 1 2 3 1 35
3

1
5

7
15

aZ = F and X = F1.
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Table 9. Hyperfine Intensitiesa for N2H
+ J=1 → 0

F ′ → F b F ′1 → F1
b J ′ → J Ri(F1, J)Ri(F, F1) ∆νb (kHz) Ri(obs)c

(0,1) (1,1) (1,0) 1
27

−2155.7 1
27

(2,2) (1,1) (1,0) 5
36

−1859.9 5
27

(2,1) (1,1) (1,0) 5
108

(1,2) (1,1) (1,0) 5
108

−1723.4 1
9

(1,1) (1,1) (1,0) 1
36

(1,0) (1,1) (1,0) 1
27

(2,1) (2,1) (1,0) 5
36

−297.1 5
27

(2,2) (2,1) (1,0) 5
108

(3,2) (2,1) (1,0) 7
27

+0.0 7
27

(1,1) (2,1) (1,0) 5
108

+189.9 1
9

(1,2) (2,1) (1,0) 1
324

(1,0) (2,1) (1,0) 5
81

(1,2) (0,1) (1,0) 5
81

+2488.3 1
9

(1,1) (0,1) (1,0) 1
27

(1,0) (0,1) (1,0) 1
81

aThe sum of the relative intensities
∑

iRi = 1.0.

bFrequency offset in kHz relative to 93173.7767MHz (Caselli et al. 1995).

cSince the J=0 level splitting is very small, only the sum of all transitions

into the J=0 is observed.
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To derive the column density for N2H
+ we start with the general equation for the total

molecular column density (Equation 28) with:

S =
Ju

2Ju + 1
(see §8.1)

µ = 3.37 Debye

B0 = 46586.88 MHz

Ri = (see §10 or, for J=1-0, see Table 9)

gu = 2Ju + 1

gK = 1 (for linear molecules)

gI = 1 (for linear molecules)

Qrot ' kT

hB
+

1

3
(Equation 46)

' 0.45 (T + 0.74)

Eu = 4.4716 K (84)

which leads to:

Ntot(N2H
+) =

3h

8π3µ2

Qrot

JuRi

exp

(
Eu

kTex

) [
exp

(
hν

kTex

)
− 1

]−1 ∫
τνdv (85)

Assuming optically thin emission and and Tbg � Tex, we find that Equation 85 becomes:

Ntot(N2H
+) =

6.25× 1015

ν(GHz)Ri

exp

(
Eu

kTex

)
TB∆v(km/s) cm−2 (86)

where ν is the frequency of the hyperfine transition used. For example, if the

F=(2,1), J=(1,0) hyperfine was chosen for this calcuation, Ri = 7
27

(See Table 9) and

ν = 93.1737767GHz. Equation 86 then becomes:
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Ntot(N2H
+) = 2.59× 1014 exp

(
Eu

kTex

)
TB∆v(km/s) cm−2 (87)

12.4. NH3

Ammonia (NH3) is a symmetric top molecule with three opposing identical H (spin=1
2
)

nuclei. Quantum mechanical tunneling of the N nucleus through the potential plane formed

by the H nuclei leads to inversion splitting of each NH3 energy level. On top of this inversion

splitting the energy levels are split due to two hyperfine interactions:

J–IN : Coupling between the quadrupole moment of the N nucleus and the electric field

of the H atoms, which splits each energy level into three hyperfine states. For this

interaction the angular momentum vectors are defined as follows: ~F1 = ~J + ~IN .

F1–IH: Coupling between the magnetic dipole of the three H nuclei with the weak current

generated by the rotation of the molecule. For this interaction the angular momentum

vectors are defined as follows: ~F = ~F1 + ~IH .

Weaker N-H spin-spin and H-H spin-spin interactions also exist, but only represent small

perturbations of the existing hyperfine energy levels. Note too that “anomalies” between

observed hyperfine transitions intensities and those predicted by quantum mechanics

have been observed (see Stutzki et al. (1984) and Stutzki & Winnewisser (1985)). These

anomalies are likely due to “line overlap” between the hyperfine transitions.

Figure 7 shows the rotational energy level diagram for the first three J-levels of NH3,

while Figure 8 shows the inversion and hyperfine level structure for the (1,1) transition.

(ADD (3,3) and (4,4) AS TIME PERMITS.) Figure 9 shows all NH3 energy levels below

600 K. Table 10 lists level energies.
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Table 10. NH3 Level Energiesa,b

Level Energy (K) Level Energy (K)

(0,0,a) 1.14 . . . . . .

(1,1,s) 23.21 (1,1,a) 24.35

(1,0,s) 28.64 . . . . . .

(2,2,s) 64.20 (2,2,a) 65.34

(2,1,s) 80.47 (2,1,a) 81.58

(2,0,a) 86.99 . . . . . .

(3,3,s) 122.97 (3,3,a) 124.11

(3,2,s) 150.06 (3,2,a) 151.16

(3,1,s) 166.29 (3,1,a) 167.36

(3,0,s) 171.70 . . . . . .

(4,4,s) 199.51 (4,4,a) 200.66

(4,3,s) 237.40 (4,3,a) 238.48

(4,2,s) 264.41 (4,2,a) 265.45

(4,1,s) 280.58 (4,1,a) 281.60

(4,0,a) 286.98 . . . . . .

(5,5,s) 293.82 (5,5,a) 295.00

(5,4,s) 342.49 (5,4,a) 343.58

(5,3,s) 380.23 (5,3,a) 381.25

(5,2,s) 407.12 (5,2,s) 408.10

(5,1,s) 423.23 (5,1,a) 424.18

(5,0,s) 428.60 . . . . . .

(6,6,s) 405.91 (6,6,a) 407.12

(6,3,s) 551.30 (6,3,a) 552.25

(6,0,a) 600.30 . . . . . .

aisted in level energy order per J and inversion-

paired as appropriate.

bSee Poynter & Kakar (1975) for lower-state en-

ergy calculations.
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Fig. 7.— Rotational energy level diagram for the first three J-levels of NH3.
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Fig. 8.— Inversion and hyperfine energy level structure for the (1,1) (top) and (2,2) (bottom)

transitions of NH3. Note that the 18 (1,1) and 24 (2,2) allowed transitions are marked with

arrows ordered by increasing frequency from left to right. Adapted from Ho & Townes

(1983).
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Fig. 9.— Rotational energy level diagram for NH3. All levels with energy < 1600K are

shown.
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We can calculate the relative hyperfine intensities (Ri) for the (1,1) and (2,2) transitions

using the formalism derived in §10. Using Table 4 we can derive the relevant Ri for the

quadrupole hyperfine (Ri(F1, J), I=1; Tables 12, 13, 14, and 15) and magnetic hyperfine

(Ri(F, F1), I=1
2
; Tables 16 and 17) coupling cases. The resultant hyperfine intensities

are listed in Tables 18 and 19 (add (3,K) and (4,K) when available). Note that in the

appropriate tables we list the association between Z and X and their associated quantum

numbers following the assignment mapping equations listed in Equation 67. Figure 10

shows the synthetic spectra for the NH3 (1,1) and (2,2) transitions.

For illustration we can derive the column density equation for a para-NH3 (K6=0 or 3n)

inversion (∆K = 0) transition. For para-NH3 inversion transitions:

S =
K2

Ju(Ju + 1)

µ = 1.468 Debye

Ri = (see §10 or, for (1,1) and (2,2), see Tables 18 and 19)

gu = 2Ju + 1

gK = 2 for K 6= 0

gI =
2

8
for K 6= 3n

We can compute the following equation for the molecular column density in NH3 as derived

from a measurement of a (J,K) (K 6=0 or 3n) inversion (∆K = 0) transition assuming:

• Summation over all hyperfine levels in a given (J,K) transition (note that
∑

iRi = 1),

• Optically thin emission,

• Unity filling factor (f=1),
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Fig. 10.— Synthetic spectra for the NH3 (1,1) (top) and (2,2) (bottom) transitions. Hor-

izontal axes are offset velocity (top) and frequency (bottom) relative to 23694495.487 and

23722633.335 kHz, respectively. Transition designations in (F′,F′1:F,F1) format are indicated.

Overlain in dash is a synthetic 100 kHz gaussian linewidth source spectrum.
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using Equation 74:

Ntot(NH3) =
3k

8π3µ2Ri

Ju(Ju + 1)

K2

Qrot

gugKgI

exp

(
Eu

kTex

) ∫
TRdv

' 3.34× 1014Ju(Ju + 1)Qrot

ν(GHz)µ2(Debye)K2(2Ju + 1)Ri

exp

(
Eu

kTex

) ∫
TRdv(km/s) cm−2

' 1.55× 1014Ju(Ju + 1)Qrot

ν(GHz)K2(2Ju + 1)Ri

exp

(
Eu

kTex

) ∫
TRdv(km/s) cm−2 (88)

12.5. H2CO

Formaldehyde (H2CO) is a slightly asymmetric rotor molecule. The level of asymmetry

in molecules is often described in terms of Ray’s asymmetry parameter κ (Ray 1932):

κ ≡ 2B − A− C

A− C
(89)

where A, B, and C are the rotational angular momentum constants for the molecule,

usually expressed in MHz. For H2CO, A = 281970.37MHz, B = 38835.42558MHz, and C

= 34005.73031MHz, which yields κ ' −0.961, which means that H2CO is nearly a prolate

symmetric rotor. The slight asymmetry in H2CO results in limiting prolate (quantum

number K−1) and oblate (quantum number K+1) symmetric rotor energy levels that are

closely spaced in energy, a feature commonly referred to as “K-doublet splitting”. Figure 11

shows the energy level diagram for H2CO including all energy levels E ≤ 300K. In addition

to the asymmetric rotor energy level structure H2CO possess spin-rotation and spin-spin

hyperfine energy level structure. Magnetic dipole interaction between the H nuclei and

rotational motion of the molecule result in spin-rotation hyperfine energy level splitting. For

the 110−111 transition the frequency offsets of these hyperfine transitions are δν ≤ 18.5 kHz.

The weaker spin-spin interactions between the nuclei are generally not considered.
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Fig. 11.— Energy level diagram for H2CO including all energy levels with E ≤ 300K.
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Table 11 lists the frequencies and relative intensities for the spin-rotation hyperfine

transitions of the H2CO 110− 111, 211− 212, and 312− 313 transitions. Note that in Table 11

we list the association between Z and X and their associated quantum numbers following

the assignment mapping equations listed in Equation 67. Figure 12 shows the synthetic

spectra for the NH3 (1,1) and (2,2) transitions. Furthermore, note that the hyperfine

intensities are exactly equal to those calculated for the spin-rotation hyperfine components

of NH3 (see §E).

For illustration we can derive the column density equation for a ortho-H2CO (K odd)

K-doublet (∆K = 0) transition. For ortho-H2CO transitions:

S =
K2

Ju(Ju + 1)

µ = 2.331 Debye

Ri = (see §10 or, for 110 − 111, 211 − 212, or 312 − 313 see Table 11)

gu = 2Ju + 1

gK = 2 for K 6= 0

gI =
3

4
for K odd

We can compute the following equation for the molecular column density in H2CO as

derived from a measurement of a (J,K) (K odd) K-doublet (∆K = 0) transition assuming:

• Summation over all hyperfine levels in a given (J,K) transition (note that
∑

iRi = 1),

• Optically thin emission,

• Unity filling factor (f=1),

using Equation 74:
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Fig. 12.— Synthetic spectra for the H2CO 110 − 111, 211 − 212, and 312 − 313 transitions.

Horizontal axes are offset velocity (top) and frequency (bottom) relative to blaaa, blaaa, and

blaaa kHz, respectively. Transition designations in (F′1,J
′:F1,J) format are indicated. For

the 312 − 313 transition only the ∆F = 0 hyperfine transitions are shown. Overlain in dash

is a synthetic 10 kHz gaussian linewidth source spectrum.
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Table 11. F1-IH Hyperfine Frequencies and Intensities for H2CO J=1− 1, 2− 2, and 3− 3

K-Doublet transitions

F ′
1 → F1

a J ′ → Ja ∆HF
b (kHz) a b c Type

(2F ′
1+1)(2F1+1)

(2I+1)
6j Ri(F1, J)

(1,0) (1,1) −18.53 1 1 1 2 1 − 1
3

1
9

(0,1) (1,1) −1.34 1 1 1 2 1 − 1
3

1
9

(2,2) (1,1) −0.35 1 2 1 4 25
3

− 1
2
√

5
5
12

(2,1) (1,1) +4.05 1 1 2 2 5 1
6

5
36

(1,2) (1,1) +6.48 1 1 2 2 5 1
6

5
36

(1,1) (1,1) +11.08 1 1 1 4 3 1
6

1
12

(1,1) (2,2) −20.73 1 1 2 4 3 1
2
√

5
3
20

(1,2) (2,2) −8.5 1 2 2 2 5 − 1
10

1
20

(2,1) (2,2) −0.71 1 2 2 2 5 − 1
10

1
20

(3,3) (2,2) +0.71 1 3 2 4 49
3

− 2
√

2
3
√

35
392
945

(3,2) (2,2) +1.42 1 2 3 2 35
3

1
15

7
135

(2,3) (2,2) +9.76 1 2 3 2 35
3

1
15

7
135

(2,2) (2,2) +10.12 1 2 2 4 25
3

1
6

25
108

(2,3) (3,3) . . . 1 3 3 2 35
3

− 1
21

5
189

(4,3) (3,3) . . . 1 3 4 2 21 1
28

3
112

(4,4) (3,3) +0.00 1 4 3 4 27 −
√

5
4
√

21
45
112

(3,3) (3,3) −10.4 1 3 3 4 49
3

11
84

121
432

(2,2) (3,3) +23.0 1 2 3 4 25
3

−2
√

2
3
√

35
40
189

(3,4) (3,3) . . . 1 3 4 2 21 1
28

3
112

(3,2) (3,3) . . . 1 3 3 2 35
3

− 1
21

5
189

aZ = F1 and X = J .

bFrequency offset in kHz relative to 4829.6596MHz for 110 − 111, 14488.65MHz for 211 − 212, and

28974.85MHz for 312 − 313.
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Ntot(H2CO) =
3k

8π3µ2Ri

Ju(Ju + 1)

K2

Qrot

gugKgI

exp

(
Eu

kTex

) ∫
TRdv

' 1.11× 1014Ju(Ju + 1)Qrot

ν(GHz)µ2(Debye)K2(2Ju + 1)Ri

exp

(
Eu

kTex

) ∫
TRdv(km/s) cm−2

' 2.04× 1013Ju(Ju + 1)Qrot

ν(GHz)K2(2Ju + 1)Ri

exp

(
Eu

kTex

) ∫
TRdv(km/s) cm−2 (90)
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A. Line Profile Functions

For a Gaussian profile the function φ(ν) is given by

φ(ν) =
1√
2πσ

exp

[
−(ν − ν0)

2

2σ2

]
(A1)

where

2σ2 =
ν2

0

c2

(
2kTk

M
+ v2

)
(A2)

and

This manuscript was prepared with the AAS LATEX macros v5.2.
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∫
φ(ν)dν = 1 (A3)

The Gaussian profile has a FWHM given by (in both frequency and velocity):

∆νD =
2ν0

c

[
ln 2

(
2kTk

M
+ v2

)]2

(A4)

∆vD = 2

[
ln 2

(
2kTk

M
+ v2

)]2

(A5)

and a peak value given by:

φ(ν)peak =
2
√

ln 2√
π∆νD

(A6)

=
2
√

ln 2c√
πν0∆vD

(A7)

If one uses peak values instead of integrating over a Gaussian profile to derive column

densities, one must make the following correction:

(Ntot)Gauss = 2

√
ln 2

π
(Ntot)peak (A8)

B. Integrated Fluxes Versus Brightness Temperatures

All calculations in this document assume the use of integrated brightness temperatures

(
∫
TB∆v). If one uses integrated fluxes (

∫
Sν∆v), the total molecular column density

assuming optically-thin emission (Equation 74) is modified by using the relationship

between flux density and brightness temperature:
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Sν =
2kTBν

2

c2
Ωs (B1)

and becomes

Ntot =

(
D

2Rs

)2
3c2

16π3Sµ2ν3

(
Qrot

gugKgnuclear

)
exp

(
Eu

kT

) ∫
Sν∆v (B2)

=
3c2

16π3ΩsSµ2ν3

(
Qrot

gugKgnuclear

)
exp

(
Eu

kT

) ∫
Sν∆v (B3)

C. Integrated Intensity Uncertainty

For cases where you do not have a calculation from a fit to the integrated intensity of a

spectral line, one can use the following estimate given a measurement of the baseline RMS

and line profile properties.

∫
Tdv = ∆vc

N∑
n=1

Tn (C1)

≡ I

...where ∆vc is the spectral velocity channel width, Tn is a spectral channel value, and the

line spans N channels. The statistical uncertainty of the integrated line intensity is given

by:

σ2
I = σ2

T

[
∂I

∂T

]2

+ σ2
∆vc

[
∂I

∂(∆vc)

]2

(C2)

= σ2
T (∆vc)

2 (C3)
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...where I have used the fact that we know the velocity channel width (σ∆vc = 0). Using

Equation C2 in Equation C3, and assuming that all of the channel noise values are equal:

N∑
n=1

σ2
Tn

= Nσ2
T (C4)

...we get...

σ2
I = Nσ2

T (∆vc)
2 (C5)

σI =
√
NσT ∆vc (C6)

=
√

∆vline∆vcσT (C7)

...where we have used the fact that the spectral line width ∆vline = N∆vc to get the last

expression for σI .

D. Excitation and Kinetic Temperature

This section is drawn from Appendix A of Mangum et al. (1992). If the metastable

states in NH3 are coupled only through collisions and the populations in the upper states

in each K–ladder (J 6=K) can be neglected, the populations in the metastable states are

related through the Boltzmann equation. In molecular clouds, though, ∆K = 1 collisions

across K–ladders will deplete metastable states in favor of their next lower J metastable

states. Therefore, for example, collisional de–excitation of the (2,2) transition will result in

an increase in the population of the (2,1) state, followed by quick radiative relaxation of the

(2,1) state into the (1,1) state. This implies that an excitation temperature, Tex(J
′, K ′; J,K)

relating the populations in the (J′,K′) and (J,K) states, n(J′,K′) and n(J,K), may be

derived. From the Boltzmann equation,
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n(J ′, K ′)

n(J,K)
=
g(J ′, K ′)

g(J,K)
exp

[
−∆E(J ′, K ′; J,K)

Tex(J ′, K ′; J,K)

]
(D1)

and the ratio of level (J′,K′) and (J,K) column densities (assuming hν � kTex(J
′, K ′; J,K))

for the (J,K) and (J′,K′) transitions

N(J ′, K ′)

N(J,K)
=
J ′(J ′ + 1)K2τ(J ′, K ′)∆v(J ′, K ′)

J(J + 1)(K ′)2τ(J,K)∆v(J,K)
(D2)

and the fact that in a homogeneous molecular cloud

n(J ′, K ′)

n(J,K)
=
N(J ′, K ′)

N(J,K)
(D3)

we find that

g(J ′, K ′)

g(J,K)
exp

[
−∆E(J ′, K ′; J,K)

Tex(J ′, K ′; J,K)

]
=
J ′(J ′ + 1)K2τ(J ′, K ′)∆v(J ′, K ′)

J(J + 1)(K ′)2τ(J,K)∆v(J,K)
(D4)

Using

τ(J,K) =

[
F,F ′∑

RF,F ′/

F,F ′∑
Rm

]
τ(J,K,m) (D5)

where R is the relative intensity for a quadrupole (F ,F1) or main (m) hyperfine component

and
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IJK ≡

[
F,F ′∑

RF,F ′/

F,F ′∑
Rm

]
=

1.0
5
12

+ 1
12

= 2.000 for the (1,1) transition (see Tables 12 or 18)

=
1.0

56
135

+ 25
108

+ 3
20

= 1.256 for the (2,K) transitions (see Tables 13 or 19)

=
54

43

=
1.0

45
112

+ 121
432

+ 40
189

=
216

193

= 1.119 for the (3,K) transitions (see Table 14)

=
1.0

968
2475

+ 361
1200

+ 35
144

=
2200

2057

= 1.070 for the (4,K) transitions (see Table 15)

for the (1,1) and (2,2) transitions, we can relate the total optical depth τ(J,K) to the optical

depth in the main hyperfine component τ(J,K,m), noting that for NH3 g(J,K) = 2Ju + 1,

and solving Equation D4 for Tex(J
′, K ′; J,K) we find that

Tex(J
′, K ′; J,K) = −∆E(J ′, K ′; J,K){

ln

[
(2J + 1)J ′(J ′ + 1)K2IJ ′K′τ(J ′, K ′,m)∆v(J ′, K ′)

(2J ′ + 1)J(J + 1)(K ′)2IJKτ(J,K,m)∆v(J,K)

]}−1

(D6)

Using
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TB(J,K,m)

TB(J ′, K ′,m)
=

1− exp [−τ(J,K,m)]

1− exp [−τ(J ′, K ′,m)]
(D7)

which assumes equal excitation temperatures and beam filling factors in the (J,K) and

(J′,K′) transitions. Solving Equation D7 for τ(J ′, K ′,m) yields

τ(J ′, K ′,m) = − ln

[
1− TB(J ′, K ′,m)

TB(J,K,m)
{1− exp [−τ(J,K,m)]}

]
(D8)

Substituting Equation D8 into Equation D6

Tex(J
′, K ′; J,K) = −∆E(J ′, K ′; J,K)

×

{
ln

[
(2J + 1)J ′(J ′ + 1)K2IJ ′K′∆v(J ′, K ′)

(2J ′ + 1)J(J + 1)(K ′)2IJKτ(J,K,m)∆v(J,K)

× ln

(
1− TB(J ′, K ′,m)

TB(J,K,m)
{1− exp [−τ(J,K,m)]}

)]}−1

(D9)

For (J′,K′) = (2,2) and (J,K) = (1,1), Equation D9 becomes

Tex(2, 2; 1, 1) = −41.5

{
ln

[
− 0.283∆v(2, 2)

τ(1, 1,m)∆v(1, 1)

× ln

(
1− TB(2, 2,m)

TB(1, 1,m)
{1− exp [−τ(1, 1,m)]}

)]}−1

(D10)

To derive the gas kinetic temperature from Tex(2, 2; 1, 1), one uses statistical equilibrium

(noting that only collisional processes are allowed between the different K–ladders), detailed

balance, and the Boltzmann equation to calculate TK from Tex(J
′, K ′; J,K). Assuming

that the populations in the (1,1) and (2,2) transitions are much greater than that in the
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higher lying levels of para–NH3 and that the population of the non–metastable (2,1) level

is negligible in comparison to that in the (1,1) level, we can use this “three–level model” of

NH3 to analytically derive an expression relating Tex(2, 2; 1, 1) and TK

1 +
C(2, 2; 2, 1)

C(2, 2; 1, 1)
=

{
g(1, 1)

g(2, 2)
exp

[
∆E(2, 2; 1, 1)

Tex(2, 2; 1, 1)

]}{
g(2, 2)

g(1, 1)
exp

[
−∆E(2, 2; 1, 1)

TK

]}
(D11)

where C(J ′, K ′; J,K) is the collisional excitation rate at temperature TK between levels

(J′,K′) and (J,K). Equation D11 can be re–written as

Tex(2, 2; 1, 1)

{
1 +

(
TK

41.5

)
ln

[
1 +

C(2, 2; 2, 1)

C(2, 2; 1, 1)

]}
− TK = 0 (D12)

Solutions of Equation D12 give TK for a measured Tex(2, 2; 1, 1).

E. NH3 Frequency and Relative Intensity Calculation Tables
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Table 12. J–IN Hyperfine Intensities for NH3(1,1)

F ′1 → F1
a J ′ → Ja a b c Type

(2F ′
1+1)(2F1+1)

(2I+1)
6j Ri(F1, J)

(0,1) (1,1) 1 1 1 2 1 −1
3

1
9

(2,1) (1,1) 1 1 2 2 5 1
6

5
36

(2,2) (1,1) 1 2 1 4 25
3

− 1
2
√

5
5
12

(1,1) (1,1) 1 1 1 4 3 1
6

1
12

(1,2) (1,1) 1 1 2 2 5 1
6

5
36

(1,0) (1,1) 1 1 1 2 1 −1
3

1
9

aZ = F1 and X = J .

Table 13. J–IN Hyperfine Intensities for NH3(2,K)

F ′1 → F1
a J ′ → Ja a b c Type

(2F ′
1+1)(2F1+1)

(2I+1)
6j Ri(F1, J)

(1,2) (2,2) 1 2 2 2 5 − 1
10

1
20

(3,2) (2,2) 1 2 3 2 35
3

1
15

7
135

(3,3) (2,2) 1 3 2 4 49
3

− 2
√

2
3
√

35
56
135

(2,2) (2,2) 1 2 2 4 25
3

1
6

25
108

(1,1) (2,2) 1 1 2 4 3 − 1
2
√

5
3
20

(2,3) (2,2) 1 2 3 2 35
3

1
15

7
135

(2,1) (2,2) 1 2 2 2 5 − 1
10

1
20

aZ = F1 and X = J .
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Table 14. J–IN Hyperfine Intensities for NH3(3,K)

F ′1 → F1
a J ′ → Ja a b c Type

(2F ′
1+1)(2F1+1)

(2I+1)
6j Ri(F1, J)

(2,3) (3,3) 1 3 3 2 35
3

− 1
21

5
189

(4,3) (3,3) 1 3 4 2 21 1
28

3
112

(4,4) (3,3) 1 4 3 4 27 −
√

5
4
√

21
45
112

(3,3) (3,3) 1 3 3 4 49
3

11
84

121
432

(2,2) (3,3) 1 2 3 4 25
3

− 2
√

2
3
√

35
40
189

(3,4) (3,3) 1 3 4 2 21 1
28

3
112

(3,2) (3,3) 1 3 3 2 35
3

− 1
21

5
189

aZ = F1 and X = J .

Table 15. J–IN Hyperfine Intensities for NH3(4,K)

F ′1 → F1
a J ′ → Ja a b c Type

(2F ′
1+1)(2F1+1)

(2I+1)
6j Ri(F1, J)

(3,4) (4,4) 1 4 4 2 21 − 1
36

7
432

(5,4) (4,4) 1 4 5 2 33 1
45

11
675

(5,5) (4,4) 1 5 4 4 121
3

− 2
√

2
5
√

33
968
2475

(4,4) (4,4) 1 4 4 4 27 19
180

361
1200

(3,3) (4,4) 1 3 4 4 49
3

−
√

5
4
√

21
35
144

(4,5) (4,4) 1 4 5 2 33 1
45

11
675

(4,3) (4,4) 1 4 4 2 21 − 1
36

7
432

aZ = F1 and X = J .
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Table 16. F1–IH Hyperfine Frequencies and Intensities for NH3(1,1)

F ′ → F a F ′
1 → F1

a ∆νHF
b (kHz) a b c Type (2F ′+1)(2F+1)

(2I+1) 6j Ri(F, F1)

(1
2 , 1

2) (0,1) −1568.487 1
2

1
2 1 2 2 1√

6
1
3

(1
2 , 3

2) (0,1) −1526.950 1
2 1 3

2 1 4 − 1√
6

2
3

(3
2 , 1

2) (2,1) −623.306 1
2 2 3

2 1 4 2√
3

1
3

(5
2 , 3

2) (2,1) −590.338 1
2 2 5

2 1 12 − 1
2
√

5
3
5

(3
2 , 3

2) (2,1) −580.921 1
2

3
2 2 2 8 1

2
√

30
1
15

(1
2 , 1

2) (1,1) −36.536 1
2

1
2 1 4 2 −1

3
2
9

(3
2 , 1

2) (1,1) −25.538 1
2 1 3

2 2 4 −1
6

1
9

(5
2 , 3

2) (2,2) −24.394 1
2 2 5

2 2 12 − 1
10
√

3
1
25

(3
2 , 3

2) (2,2) −14.977 1
2

3
2 2 4 8 − 3

10
√

2
18
50

(1
2 , 3

2) (1,1) +5.848 1
2 1 3

2 2 4 −1
6

1
9

(5
2 , 5

2) (2,2) +10.515 1
2

5
2 2 4 18

√
7

15
14
25

(3
2 , 3

2) (1,1) +16.847 1
2

3
2 1 4 8

√
5

6
√

2
5
9

(3
2 , 5

2) (2,2) +19.932 1
2 2 5

2 2 12 − 1
10
√

3
1
25

(1
2 , 3

2) (1,2) +571.792 1
2 2 3

2 1 4 1
2
√

3
1
3

(3
2 , 3

2) (1,2) +582.790 1
2

3
2 2 2 8 1

2
√

30
1
15

(3
2 , 5

2) (1,2) +617.700 1
2 2 5

2 1 12 − 1
2
√

5
3
5

(1
2 , 1

2) (1,0) +1534.050 1
2

1
2 1 2 2 1√

6
1
3

(3
2 , 1

2) (1,0) +1545.049 1
2 1 3

2 1 4 − 1√
6

2
3

aZ = F and X = F1.

bFrequency offset in kHz relative to 23694.495487 kHz (Kukolich 1967, Table I).
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Table 17. F1–IH Hyperfine Frequencies and Intensities for NH3(2,2)

F ′ → F a F ′
1 → F1

a ∆νHF
b (kHz) a b c Type

(2F ′+1)(2F+1)
(2I+1)

6j Ri(F, F1)

( 3
2
, 3
2
) (1,2) −2099.027 1

2
3
2

2 2 8 1
2
√

30
1
15

( 3
2
, 5
2
) (1,2) −2058.265 1

2
2 5

2
1 12 − 1

2
√

5
3
5

( 1
2
, 3
2
) (1,2) −2053.464 1

2
2 3

2
1 4 1

2
√

3
1
3

( 7
2
, 5
2
) (3,2) −1297.079 1

2
3 7

2
1 24 − 1√

42
12
21

( 5
2
, 3
2
) (3,2) −1296.096 1

2
3 5

2
1 12 1√

30
6
15

( 5
2
, 5
2
) (3,2) −1255.335 1

2
5
2

3 2 18 1
3
√

70
1
35

( 3
2
, 1
2
) (1,1) −44.511 1

2
1 3

2
2 4 − 1

6
1
9

( 5
2
, 3
2
) (2,2) −41.813 1

2
2 5

2
2 12 − 1

10
√

3
1
25

( 7
2
, 5
2
) (3,3) −41.444 1

2
3 7

2
2 24 − 1

14
√

6
1
49

( 5
2
, 5
2
) (2,2) −1.051 1

2
5
2

2 4 18
√

7
15

14
25

( 3
2
, 3
2
) (2,2) −1.051 1

2
3
2

2 4 8 − 3
10
√

2
9
25

( 7
2
, 7
2
) (3,3) +0.309 1

2
7
2

3 4 32 3
√

3
28
√

2
27
49

( 5
2
, 5
2
) (3,3) +0.309 1

2
5
2

3 4 18 −
√

10
21

20
49

( 3
2
, 3
2
) (1,1) +1.054 1

2
3
2

1 4 8
√

5
6
√

2
5
9

( 1
2
, 1
2
) (1,1) +1.054 1

2
1
2

1 4 2 − 1
3

2
9

( 3
2
, 5
2
) (2,2) +39.710 1

2
2 5

2
2 12 − 1

10
√

3
1
25

( 5
2
, 7
2
) (3,3) +42.045 1

2
3 7

2
2 24 − 1

14
√

6
1
49

( 1
2
, 3
2
) (1,1) +46.614 1

2
1 3

2
2 4 − 1

6
1
9

( 5
2
, 5
2
) (2,3) +1254.584 1

2
5
2

3 2 18 1
3
√

70
1
35

( 3
2
, 5
2
) (2,3) +1295.345 1

2
3 5

2
1 12 1√

30
6
15

( 5
2
, 7
2
) (2,3) +1296.328 1

2
3 7

2
1 24 − 1√

42
12
21

( 3
2
, 1
2
) (2,1) +2053.464 1

2
2 3

2
1 4 1

2
√

3
1
3

( 5
2
, 3
2
) (2,1) +2058.265 1

2
2 5

2
1 12 − 1

2
√

5
3
5

( 3
2
, 3
2
) (2,1) +2099.027 1

2
3
2

2 2 8 1
2
√

30
1
15

aZ = F and X = F1.

bFrequency offset in kHz relative to 23722633.335 kHz (Kukolich 1967, Table II)
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Table 18. Hyperfine Intensities for NH3(1,1)

F ′ → F F ′
1 → F1 J ′ → J Ri(F1, J)Ri(F, F1)a,b

( 1
2
, 1
2
) (0,1) (1,1) 1

27

( 1
2
, 3
2
) (0,1) (1,1) 2

27

( 3
2
, 1
2
) (2,1) (1,1) 5

108

( 5
2
, 3
2
) (2,1) (1,1) 1

12

( 3
2
, 3
2
) (2,1) (1,1) 1

108

( 1
2
, 1
2
) (1,1) (1,1) 2

108

( 3
2
, 1
2
) (1,1) (1,1) 1

108

( 5
2
, 3
2
) (2,2) (1,1) 1

60

( 3
2
, 3
2
) (2,2) (1,1) 3

20

( 1
2
, 3
2
) (1,1) (1,1) 1

108

( 5
2
, 5
2
) (2,2) (1,1) 7

30

( 3
2
, 3
2
) (1,1) (1,1) 5

108

( 3
2
, 5
2
) (2,2) (1,1) 1

60

( 1
2
, 3
2
) (1,2) (1,1) 5

108

( 3
2
, 3
2
) (1,2) (1,1) 1

108

( 3
2
, 5
2
) (1,2) (1,1) 1

12

( 1
2
, 1
2
) (1,0) (1,1) 1

27

( 3
2
, 1
2
) (1,0) (1,1) 2

27

aCompare with Kukolich (1967) Table IX after scaling

Ri by (2IH +1)(2IN +1) = 6 (Kukolich (1967) lists unnor-

malized line strengths in their Table IX).

bNote that the sum of the relative intensities
P

i Ri =

1.0.
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Table 19. Hyperfine Intensities for NH3(2,2)

F ′ → F F ′
1 → F1 J ′ → J Ri(F1, J)Ri(F, F1)a,b

( 3
2
, 3
2
) (1,2) (2,2) 1

300

( 3
2
, 5
2
) (1,2) (2,2) 3

100

( 1
2
, 3
2
) (1,2) (2,2) 1

60

( 7
2
, 5
2
) (3,2) (2,2) 4

135

( 5
2
, 3
2
) (3,2) (2,2) 14

675

( 5
2
, 5
2
) (3,2) (2,2) 1

675

( 3
2
, 1
2
) (1,1) (2,2) 1

60

( 5
2
, 3
2
) (2,2) (2,2) 1

108

( 7
2
, 5
2
) (3,3) (2,2) 8

945

( 5
2
, 5
2
) (2,2) (2,2) 7

54

( 3
2
, 3
2
) (2,2) (2,2) 1

12

( 7
2
, 7
2
) (3,3) (2,2) 8

35

( 5
2
, 5
2
) (3,3) (2,2) 32

189

( 3
2
, 3
2
) (1,1) (2,2) 1

12

( 1
2
, 1
2
) (1,1) (2,2) 1

30

( 3
2
, 5
2
) (2,2) (2,2) 1

108

( 5
2
, 7
2
) (3,3) (2,2) 8

945

( 1
2
, 3
2
) (1,1) (2,2) 1

60

( 5
2
, 5
2
) (2,3) (2,2) 1

675

( 3
2
, 5
2
) (2,3) (2,2) 14

675

( 5
2
, 7
2
) (2,3) (2,2) 4

135

( 3
2
, 1
2
) (2,1) (2,2) 1

60

( 5
2
, 3
2
) (2,1) (2,2) 3

100

( 3
2
, 3
2
) (2,1) (2,2) 1

300

aCompare with Kukolich (1967) Table IX after scaling

Ri by (2IH +1)(2IN +1) = 6 (Kukolich (1967) lists unnor-

malized line strengths in their Table IX).

bNote that the sum of the relative intensities
P

i Ri =

1.0.


