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Note on Spectral Response 
Like all spectroscopic instruments, ALMA can only measure the spectrum of the signals received 
with a finite degree of fidelity.  To interpret the data we need to understand the relationship 
between the output spectrum produced by the telescope and the true spectrum of the astronomical 
source.  We expect that this relationship will be linear (although there will of course be added 
noise, which we mostly ignore here).  We also expect that, to a good approximation, the output 
spectrum will be simply the convolution of the input spectrum with a known “Spectral Response 
Function”.  Furthermore this response function should not vary significantly in different parts of the 
spectrum.  The form of the response function is however determined by some choices that are 
made in processing the data.  These are under the control of the user and are described here.   

The correlator operates by forming the auto-correlation and cross-correlation functions of the 
incoming signals and then taking the Fourier transform to generate the spectrum.  The correlation 
functions are only calculated out to a certain maximum value of the time difference (the “lag”), 
which is set by the amount of hardware available.  This maximum lag, τmax sets the spectral 
resolution, Δν ~ 1/τmax.  The truncation of the correlation function at this maximum lag corresponds 
to multiplying the true correlation function with a “top-hat” function.  This means that, when we take 
the transform, the Spectral Response will be a sinc function, sin(ν)/ ν, which looks like this: 

 
 

 

 

 

 

 

 

 

 

This can be thought of as the response of the instrument to a pure sine wave, i.e. an infinitely 
narrow feature in the input spectrum, which we have arbitrarily chosen here to fall at channel 129 
of the output.  In practice we do not calculate all the intermediate points in the output spectrum but 
only sample it at a finite number of points (pink in the plot above) separated by the “channel 
spacing”, Δνch, which we set to be the Nyquist interval, 1/2τmax.  When the input frequency exactly 
matches that of one of the output channels1 (as in the plot above), then the response is ideal: unity 
for that channel and zero for all the others.  As soon as the input frequency differs from an integer 
times the channel spacing, however, the “ringing” implicit in the sinc function shows up: 

 

 

 

 

                                                 
1 To make the number of output points a power of two, a half-channel shift is implemented in the transform used in the 
ALMA software so the data points actually fall at frequencies which are odd half-integer multiples of the channel spacing. 



This “ringing” is generally felt to be an undesirable feature of this form of spectrometer2.  The 
solution is to apply a weighting to the correlation functions before transforming them.  This is 
equivalent to tapering or “apodizing” an aperture in order to reduce the sidelobes on the image.  
The spectral case has been thoroughly studied:  see in particular the classic book by Blackman 
and Tukey3 and the Wikipedia article http://en.wikipedia.org/wiki/Window_function. 

A total of seven weighting or “window” functions are implemented in the software of the ALMA 64-
input correlator4 (see Comoretto’s memo5 for details).  In this note I have added an eighth function, 
Cosine, for good measure.  In the lag domain the weighting functions look like this:  
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Here are the spectral response functions corresponding to the four “softer” weighting functions: 
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Welch (parabolic) and Cosine weighting are quite similar, so we do indeed not need both.   

                                                 
2 Note that a sinc-function spectral response is also produced by an optical/IR Fourier-transform spectrometer, whereas 
the most familiar optical spectrometer, a diffraction grating with a uniform illumination, produces a sinc-squared response, 
i.e. one which the power in the sidelobes falls off much faster away from the peak response. 
3 “The Measurement of Power Spectra”, R.B.Blackman & J.W.Tukey, Dover edition 1959, 486-60507-8. 
4 This description is focussed on the 64-input Correlator.  The ACA Correlator has a completely different architecture (FX 
instead of XF).  This means that the intrinsic response has a sinc-squared form, but it also has very high frequency 
resolution even at full bandwidth, so a response that matches that of the 64-input correlator can be synthesized by 
forming a suitably weighted sum of channels from the raw spectrum.  See ALMA memo 580, “Frequency profile 
difference between ACA Correlator and 64-Antenna Correlator”, Kamazaki, T., Okumura, S. K. and Chikada, Y. 
5 ALMA Memo 583, “Algorithms and formulas for hybrid correlator correction”, Sect. 4.1, Giovanni Comoretto. 



Note that Cosine weighting in the lag domain corresponds to averaging two channels in the 
spectral domain, i.e. convolving with the function 0.5 x [ δ(-½) + δ(½) ].  Similarly Hanning 
weighting, which is cosine-squared in the lag domain, corresponds to averaging by two channels 
twice, which is equivalent to convolving with the function 0.25 x δ(-1) + 0.5 x δ(0) + 0.25 x δ(1). 

Here are the spectral response functions for the other four cases: 
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The Bartlett function is a simple linear taper, giving rise to a sinc-squared spectral response.   

As can be seen from the plots the effects of the weighting are to reduce the height of the peak 
(recall that this is the response to an infinitely narrow spectral line), reduce the sidelobes, and 
increase the width of the response function, i.e. reduce the spectral resolution. The remaining 
three functions, Hamming, Blackman6 and Blackman-Harris, have been designed to maximize the 
suppression of the sidelobes (the spurious responses away from the peak) while minimizing the 
loss of resolution.  This is more clearly seen in a log plot.  (Note that these have been normalized 
with respect to the peak value of the response function.  The vertical scale is in dBc.) 

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

124 128 132 136 140

Hamming
Blackman
Blackman-Harris

 

It can be seen that Hamming smoothing suppresses the first sidelobe rather well, but the fall-off 
after that is rather slow.  Blackmann has a much better fall-off but produces some loss of 

                                                 
6 Note that the name Blackman seems to have been wrongly spelt in ALMA documentation as “Blackmann”.  I believe 
that the double “n” is spurious and have used only a single “n” here. 



resolution and Blackmann-Harris manages to suppress all sidelobes to below -45dBc, with only a 
modest additional loss of resolution. 

It is worth pointing out that ALMA does have a specification of -40dBc for “spectral dynamic range” 
– the detection of weak spectral lines in the presence of strong ones.  The specification does not 
give any number for the separation between the strong and the weak features, so it is not clear 
how this relates to the topic of this note, but it is good that the Blackman-Harris does give the 
required performance, at least in principle.   

For completeness here is the log plot of the other five functions. 
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The key parameters that the user needs to know are the effective resolution, which is most simply 
described by the Full-Width-Half-Maximum (FWHM) of the Spectral Response Function, and the 
Effective Bandwidth, which determines the rms noise fluctuations in the spectrum.  The latter is the 
value that one needs to use in the term 1 / square root (bandwidth x integration time) in the 
standard expressions for the noise fluctuations7.  One of the effects of applying the weighting is of 
course to reduce the noise on the spectrum. 

These are as follows: 

  FWHM Effect BW 
Uniform 1.207 1.000 
Welch 1.590 1.875 
Cosine 1.639 2.000 
Hanning 2.000 2.667 
Hamming 1.815 2.516 
Bartlett 1.772 3.000 
Blackman 2.299 3.283 
Blackman-Harris 2.666 3.877 

The values are all expressed in units of the nominal channel spacing in the output spectrum, Δνch.  

It can be seen that reduction in the noise, which is proportional the square root of the effective 
bandwidth, is quite significant.  It should however be remembered that the data points in the 
resulting spectrum are not independent and the correlation between them increases as we use a 
stronger taper.  This means in particular that averaging across N channels will NOT cause the 
                                                 
7 Note that the “Effective Bandwidth” that I have used here is not the same as the “noise equivalent bandwidth” used in 
the engineering literature.  The reason for this is the most common engineering application is finding unresolved (e.g. 
coherent) signals in the presence of noise, whereas in astronomy we normally use enough resolution to resolve the lines 
that we are observing quite well.  We therefore calibrate our data such that the peak value of a very wide spectral 
feature will be independent of the smoothing applied, whereas the engineers calibrate theirs by injecting an unresolved 
feature and keeping the measured value the same.   



noise to go down by a factor of root(N).  Instead, for N >> 1, the noise on the averaged spectrum 
will be approximately 1/root(N) times the noise expected with no averaging and uniform weighting, 
i.e. effective BW = N, independent of what weighting function was originally applied to the data.   

We will return to the question of averaging over channels below, but there is one final point to 
make on the subject of weighting functions.  This is that, in principle, the process is (almost) 
reversible:  since we have simply applied weights to the correlation coefficients before doing the 
Fourier transform, we could, if we wished, do the inverse transform, divide by the original weights, 
apply a new set of weights and then transform back to get a new spectrum.  In fact we cannot do 
this exactly for two reasons: 1) the weight applied to the longest lag is zero (except in the case of 
the Hamming window), so this is lost, 2) the transforms and the data storage are performed with 
finite numerical precision so, if the weights are small, as is the case for the stronger taper functions 
at the larger lags, this re-weighting process will add noise due to round-off errors.  It is also true 
that CASA does not presently provide us with the capability of doing this, although it does enable 
us to average neighbouring channels together. 

The advice at this point therefore is that, unless one is doing something very specialized, the best 
thing to do is to apply a relatively light taper and then, if the data analysis indicates that smoothing 
is needed, one can average over channels at that point.  One solution would be to use just the 
Uniform weighting but, as noted, this can lead to very messy spectra as a result of the ringing from 
a strong interference spike, e.g. at the edge of the spectrum.  My personal preference is to use the 
Welch weighting8.  Cosine gives very similar results but as noted this is not included in the present 
implementation.  The present default is Hanning, which does suppress the ringing quite well (e.g. 
about -26dBc at 5 channels from the peak, compared to ~ -19 for Welch) but the spectral response 
functions is really quite wide, with the FWHM equal to twice the channel spacing. 

Spectral Averaging 
The two basic modes of operation of the ALMA baseline correlator are Time Division Mode (TDM) 
and Frequency Division (FDM).  From the point of view of the users the most important difference 
is that they get 32 times more channels in the output spectra in FDM than in TDM.  The totals are 
1024 channels in TDM mode and 32,768 in FDM.  In the most typical operation these are divided 
between the two polarizations and four basebands so that one gets either 128 or 4096 channels9 
per polarization per baseband.  This means that in practice most continuum observations will be 
made in TDM mode whereas most spectral line work will use FDM.  The snag is that in FDM mode 
the data rate is high and the resulting data sets will be large, increasingly so as the number of 
antennas in the array increases.  As a result it will become difficult to transport the data from 
spectral line observations and, in particular, the reduction will become slow and laborious.  If the 
observations really require all the spectral information – e.g. ~15,000 channels per polarization – 
then there is of course no way round this.  It is however likely that many observations require a far 
smaller number of spectral channels and in that case we are simply making things difficult for 
ourselves by storing and processing the whole set. 

The hardware does not allow any intermediate cases between TDM and FDM, so the software 
feature “Spectral Averaging” has been introduce to enable the user to control the number of output 
channels so that it matches the scientific needs better.  When spectral averaging is used, the 
output values are formed by averaging N neighbouring channels together, where N is 2, 4, 8 or 16.  
The channel spacing in the output spectra becomes N times larger than that of the underlying 
hardware mode and the number of output channels is N times smaller. 

As far as the Spectral Response Function is concerned, the result is that the functions described 
above are replaced by versions where the original has been convolved with 2, 4, 8 or 16 delta-
functions separated in frequency by the channel spacing, Δνch.  As one would expect, this means 
that, as N increases, the shapes tend towards top-hat functions and the FWHM and the Effective 
Bandwidth both tend towards N times the channel spacing, where N is the number of channels 
averaged. 

                                                 
8 Jack Welch was my Ph.D, supervisor, so I may be biased. 
9 This ignores the fact that ~1/32nd of the channels are dropped at each edge of the band to avoid aliasing. 



Here are the actual values for the first four weighting functions, again in units of Δνch.  The first 
table gives of the Full Width Half Maximum.  (In fact I have taken the width at half the central value 
here since the central value is not always the maximum.) 

N 1 2 4 8 16 
Uniform 1.207 1.639 4.063 8.033 16.017 
Welch 1.590 1.952 4.007 8.001 16.000 
Cosine 1.639 2.000 4.000 8.000 16.000 
Hanning 2.000 2.312 3.970 7.996 15.999 

Here are the values of the Effective Bandwidth. 

N 1 2 4 8 16 
Uniform 1.000 2.000 4.000 8.000 16.000 
Welch 1.875 2.565 4.499 8.470 16.457 
Cosine 2.000 2.667 4.571 8.533 16.561 
Hanning 2.667 3.200 4.923 8.828 16.787 

One can see various relationships here, which can be confirmed analytically, e.g. averaging two 
channels combined with uniform weighting is equivalent to cosine weighting and N = 2 plus cosine 
equals Hanning.  

A final important but obvious comment on spectral averaging is that it is NOT reversible.  In 
particular, the fact that we record a factor N fewer output points obviously means that information 
is lost.  It is therefore important that the combination of the underlying spectral mode and the 
number of channels averaged together is correctly chosen to ensure that the resulting spectral 
resolution is sufficient for the scientific goals. 

This table shows, for each value of N, the number of useful channels in the output spectrum per 
baseband for each polarization, assuming that two polarizations are used, together with the 
spectral resolution (FWHM) for the correlator modes that are available.  Here I have assumed that 
Welch weighting is applied to the original correlation function and two polarization products.  

Tot BW Ch Spacing Useful BW 1 2 4 8 16 
Num Chans per pol per baseband 3840 1920 960 480 240 
MHz kHz MHz  kHz kHz kHz kHz kHz 
2000 488 1875 777 953 1957 3907 7813 
1000 244 938 388 477 978 1953 3906 
500 122 469 194 238 489 977 1953 
250 61 234 97 119 245 488 977 
125 31 117 49 60 122 244 488 
62.5 15 59 24 30 61 122 244 

31.25 7.6 29.3 12.1 15 31 61 122 

(The final line of this table requires double-Nyquist sampling which is not yet supported.) 

Plots of the resulting spectral response functions are given below for completeness.  As before the 
linear plots of the spectral response function show the output value of a single channel as a very 
narrow spectral line is moved across the band.  These are not normalized, so the lower value of 
the peak when weighting and averaging is applied reflects the resulting reduced response to an 
unresolved feature.  The logarithmic plots are normalized by the central value to make it easier to 
see the shape of the function.  Note that the varying depths of the nulls in the logarithmic plots are 
just a result of the finite sampling in the calculation: the functions do all contain zeros but I have 
avoided having the sampled points fall on those. 

The x-axis on all these plots represents frequency in units of the underlying channel spacing, Δνch.  
Obviously the data points in the final output spectrum will lie 1, 2, 4, 8 or 16 points apart in accord 
with the value of N that is chosen.  This means that, as a function of the number of points from the 
central peak, the averaged response functions actually fall off very quickly. 

Richard Hills           8th April 2012  revised  1st May 2012 
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Spectral Response Functions with Averaging:   Uniform weighting  
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Hamming weighting 
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