

Correlator Subsystem Software Design

COMP-70.40.00.00-001-F-DSN
Status: Approved

Jim Pisano

Jesus Perez

Prepared By:

Name(s) and Signature(s) Organization Date

Jim Pisano

Jesus Perez

NRAO

NRAO

2009-08-12

2009-08-12

Approved By:

Name and Signature Organization Date

Released By:

Name and Signature Organization Date

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 2� of 86�

Change Record

Version Date Affected
Section(s)

Change Request

Reason/Initiation/Remarks

A All Initial Draft
B All Incorporated IDR comments
C 2003-05-16 All Incorporated PDR comments
D 2003-07-29 All Incorporated CDR1 comments
E 2004-03-22 All Initial version for CDR2
F 2005-05-06 All Update for CDR3
G 2005-06-09 All Update for CDR3 review comments
A 2006-04-27 Various Update for CDR 4 Revision ‘C’
B 2006-05-30 Various Incorporation CDR 4 review comments
D CDR 5
D 2007-06-26 Various Incorporate CDR 5 review comments
E 2008-06-5 Various CDR 6
F 2009-05-20 Various CDR 7
F 2009-08-12 Various Incorporate CDR 7 review comments

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 3� of 86�

Table of Contents

1 Introduction ..7
1.1 Purpose ..7
1.2 Scope ...8
1.3 Glossary...8

2 Requirements ..9
2.1 SSR Requirements...9
2.2 Operations Plan Requirements ..9

3 Architecture ..9
3.1 Overview ...9
3.2 CCC Packages and Functional Overview..11

3.2.1 ACS Interface...11
3.2.2 Monitor...12
3.2.3 Command Dispatcher...12
3.2.4 Tunable Filter ...12
3.2.5 LO Offsetting ...12
3.2.6 Geometric Delay ..12
3.2.7 Digitizer Statistics ..12
3.2.8 Array Management...12
3.2.9 Maintenance ...13
3.2.10 CAN I/F..13
3.2.11 Array Time Interface..14
3.2.12 TE Handler ...14
3.2.13 Correlator Configuration Validation ..15

3.3 Detailed CCC Package Descriptions ...15
3.3.1 CCC Command Dispatcher..15
3.3.2 Geometric Delay ..15
3.3.3 Array Management...18
3.3.4 Monitor...19

3.3.4.1 Correlator Hardware Monitor ...19
3.3.4.2 CCC Hardware Monitor..19
3.3.4.3 Correlator Configuration Monitor...19

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 4� of 86�

3.3.5 Correlator CAN Commands...20
3.3.5.1 LTA CAN Commands ..20
3.3.5.2 SCC CAN Commands ..21
3.3.5.3 QCC CAN Commands..21
3.3.5.4 Final Adder Commands ..21
3.3.5.5 DPI CAN Commands ...21

3.4 Sub-scan Control Sequence...21
3.5 Preloaded Configurations ..22
3.6 CDP Packages and Functional Overview..25

3.6.1 Array Time Interface..28
3.6.2 TE Handler ...28
3.6.3 CDP Monitor..28
3.6.4 CDP Maintenance ..28
3.6.5 Cluster Administration ...28
3.6.6 CDP Master Node Interface ...29
3.6.7 Master Data Publisher ..29
3.6.8 CDP Node ..29
3.6.9 Node Data Publisher ..29
3.6.10 Spectral Processing ..30
3.6.11 Lag Processing ...30
3.6.12 HPDI 32 ...30
3.6.13 Residual Delay ...30
3.6.14 Atmospheric Phase Correction...30
3.6.15 Sideband Separation...30
3.6.16 CDP Configuration...32
3.6.17 Array Configuration ...32
3.6.18 TE Scheduler..32

3.7 Detailed CDP Package Descriptions ...32
3.7.1 Lag Processing ...32
3.7.2 Correlator Flagging ..35
3.7.3 Spectral Processing ..36

3.7.3.1 Lag Normalization ..37

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 5� of 86�

3.7.3.2 Quantization Correction..37
3.7.3.3 Windowing..37
3.7.3.4 FFT..37
3.7.3.5 TFB Subband Stitching...38
3.7.3.6 TFB Bandpass Calibration..38
3.7.3.7 TFB Scaling Calibration ...38
3.7.3.8 Residual Delay Adjustment ..38
3.7.3.9 Atmospheric Phase Correction ...40
3.7.3.10 Integration Averaging ...40
3.7.3.11 Spectral Channel Averaging ...41
3.7.3.12 Channel Average...41

3.7.4 Data Publishing ..41
3.7.4.1 Scaling Factors..43

3.8 Data Flow Robustness ...43
3.8.1 Detail Data Flow ..43
3.8.2 Alarms..44

3.9 Physical Architecture ..45
3.9.1 Correlator Control Computer ...47
3.9.2 Correlator Data Processor ..47
3.9.3 Network Infrastructure ...47
3.9.4 Correlator Hardware...47

3.9.4.1 Basebands ...47
3.9.4.2 Correlator Chip Accumulation..48
3.9.4.3 Bin switching ..48

3.9.5 Physical Computer Racks ..48
3.10 Computer Cooling ...49
3.11 Dynamic Model ...50

3.11.1 CCC Timing Discussion ..50
3.11.2 CDP Compute Node Timing..51
3.11.3 CDP Master Node Timing ...54
3.11.4 Computational Load Resolution...55
3.11.5 CDP Processing Pipeline..56

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 6� of 86�

3.12 System Reliability..57
3.12.1 Single-Point Failures..57

3.12.1.1 Correlator Control Computer ..57
3.12.1.2 Correlator Data Processor Computer ..57

3.12.2 Sources of Failure ..57
3.12.3 High altitude disk server ..58
3.12.4 Error Handling ...58

3.12.4.1 External interfaces to the CDP Master..58
3.12.4.2 External interfaces to the CCC ...59
3.12.4.3 Internal interfaces between CCC and CDP Master...59
3.12.4.4 Internal interfaces between CDP Master and CDP nodes...59

3.12.5 MTBF...59
3.13 System Startup ...59

3.13.1 UPS Monitoring ...60
3.14 Telescope and Monitor Configuration Database ...61

4 Correlator Simulator ...61
4.1 Correlator Simulator Software Components ...62

4.1.1 CAN Commands ..63
4.1.2 Lag Data ...63
4.1.3 Configuration Tool ...63

4.2 ALMA Observatory Simulator..63
5 Correlator GUI..63

5.1 Correlator configuration and spectral viewing ..63
5.2 Correlator monitoring and diagnostics ..63

6 Correlator Monitoring GUI...64
6.1.1 Error Diagnostic ...64
6.1.2 Monitor Point Viewing ..64
6.1.3 Diagnostic Testing ...64

7 References ..68
8 System Interfaces..70

8.1 Package – Interface Relationship ..70
9 Appendices ...71

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 7� of 86�

9.1 Minimum Integration Duration ...71
9.1.1.1 Archive Limitations ..72
9.1.1.2 Sideband separation ..72
9.1.1.3 Science Requirements ...73

9.2 Equations ...75
9.2.1 Vs Subtraction ..75
9.2.2 Lag Normalization ...75
9.2.3 Geometric Delays...75
9.2.4 Atmospheric Phase Correction...75
9.2.5 Digitization Correction...75
9.2.6 Windowing Functions ..75
9.2.7 Discrete Fourier Transforms ..76
9.2.8 Channel Averaging...76
9.2.9 Sideband Separation...76

9.3 Correlator Hardware CAN Commands ...76
9.3.1 Common CAN Commands ..76
9.3.2 LTA Specific CAN Commands ...77
9.3.3 SCC-Specific CAN Commands ...78
9.3.4 QCC-Specific CAN Commands ..79

9.4 Correlator Configuration ...79

1 Introduction

1.1 Purpose
This document provides a high-level system design for the correlator computer system software which performs
the following tasks:

• Configure the correlator hardware and data processing parameters for a sub-scan.
• Process raw lags from the correlator hardware into raw spectral blocks
• Transmit the correlated spectral data to the Archive.
• Monitor and publish status information for the correlator hardware and Correlator subsystem com-

puters.
• Provide an interface for maintenance and diagnostics

The main constraints on this subsystem include the real-time demands placed on it by the high data rates of the
correlator hardware output, the synchronization of execution with the array-wide timing events and intensive data
processing loads due to correlator hardware output rates.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 8� of 86�

1.2 Scope
The design described is valid for the computer subsystem which controls, configures, monitors and processes the
raw data from the NRAO baseline correlator. This design also covers the 2-antenna prototype correlator to be
delivered to the Antenna Test Facility (ATF) at the VLA site.

1.3 Glossary
The standard ALMA glossary of terms can be found at:

http://edm.alma.cl/forums/alma/dispatch.cgi/Glossary/showFile/100004/d20030521120217/Yes/Glossary.pdf

Common terms used in this document are:
ACC Array Control Computer, the computer located at the OSF and responsible

for coordinating all instrument activities. It is an ordinary Unix
workstation.

ACS ALMA Common Software, a software infrastructure to support a distrib-

uted software system utilizing CORBA

APC Atmospheric Phase Correction, path length correction due to atmospheric
fluctuations

ARTM Array Real Time Machine, a computer at the Array Technical Building
which aligns external time to hardware timing events

BDD Bulk Data Distributor, an ACS module which allows the distribution of
high speed data from one publisher to many subscribers.

CAI Correlator Antenna Input
 Each set of 4 baseband pairs at an antenna are routed to correlator in-

puts in the correlator hardware. These inputs are called ‘Correlator
Antenna Inputs’ and are represented as 0-based numbers. A mapping ex-
ists between antenna labels and correlator antenna inputs.

CAMB Correlator & Antenna Master Bus, the correlator and control subsystem’s
media used for communicating between a master computer and other de-
vices.

CCC Correlator Control Computer, a rack-mounted PC with Ethernet, CAN, RS-
232, and RS-485.

CDP Correlator Data Processor, a PC-cluster which obtains raw lags from the
correlator, and converts them to spectral data blocks.

DPI Data Port Interface, the high-speed, 32-bit binary interface between
the correlator Long Term Accumulator and the CDP.

HPDI High Performance Data Interface, the interface card in each CDP compute
which receives raw lags from the correlator via the ‘DPI’.

LTA Long Term Accumulator, the main computer interface for control and data
processing of the correlator hardware.

QCC Quadrant Control Card, a type of interface card in each correlator
quadrant which monitors quadrant voltages and temperatures.

RTAI Real Time Application Interface [1], a set of Linux kernel modules
which allow for deterministic, real-time behavior with the Linux O/S.

http://www.alma.nrao.edu/development/computing/docs/joint/draft/Glossary.htm�

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 9� of 86�

SCC Station Controller Card, a type of interface card which monitors and

controls the correlator station and the filter cards.

TE Timing Event – an array-wide, highly-accurate 48 ms timing signal which
is used to synchronize distributed hardware and computers.

TFB Tunable Filter Board – high-resolution digital filter consisting of 32
multiple sub-filters which can be tuned anywhere within the 2 GHz base-
band providing higher resolution and multiple spectral windows of simi-
lar or different resolutions within a single 2 Ghz baseband.

TMCDB Telescope Monitor Configuration Data Base – a relational database which
is used by the Correlator software to manage and track hardware con-
figurations.

WVR Water Vapor Radiometer – an instrument on the telescope which measures
the intensity of water vapor absorption in the atmosphere.

Dump At the end of a correlator switching cycle, raw lags are transferred to
the CDP. This transfer is called a dump.

Lag The integrated product of two digitized signals, one delayed in time
with respect to the other. If the two signals are from the same antenna
source, then it is an ‘auto-correlation product’, else if the signals
are from different antennas, then it is a ‘cross-correlation product.’

2 Requirements

2.1 SSR Requirements
General scientific software requirements are found in [2]. Refinements of the SSR as they apply to the specific
details of the correlator hardware and computer systems are found in [3].

2.2 Operations Plan Requirements
Requirements based on the operations plan for the Correlator system can be found in [4].

3 Architecture

3.1 Overview
Figure 1 shows the architectural overview of the Correlator subsystem. It shows the five subsystems to which the
correlator interfaces with data flows highlighted.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 10� of 86�

Figure 1 Architecture Overview

The telescope operator interacts with the Correlator system indirectly through the Executive and Control systems.
The operator also monitors the status of sub-scans and the correlator via GUI interfaces provided by the Control
and Correlator systems. The Control system provides configuration and control information, geometric delay
event channels, antenna blanking event channels, and WVR event channels for each antenna. The Executive re-
ceives events which signal the completion of integrations assisting it in tracking the progress of sub-scans. The
Correlator sends spectral and channel average results to the Bulk Data Distributor, a component of the Archive,
which distributes this data to the Archive, Telescope Calibration, and Quick Look The Telescope Calibration sub-
system accepts spectral results and channel average results (the sum of all channels in a bandpass) in order to
provide atmospheric phase correction coefficients to the Control system which are passed on to the Correlator
subsystem as configuration parameters. The Quick Look pipeline accepts channel average and spectral results to
provide real-time images via a real-time filler application which collects the data on an integration basis and pro-
duces a sub-scan ASDM for quick look. Finally the Archive accepts spectral results, channel average data and
correlator monitor data (via the Control system).

The Correlator subsystem is divided into two computer systems: the CCC and the CDP (see section 3.10 for a
description of the physical architecture). The CCC is responsible for controlling and monitoring the correlator
hardware and the CDP is responsible for processing raw correlator lag data. ACS [5], a middleware layer which
is based on CORBA, provides a variety of services and is used extensively throughout the Correlator subsystem.
These services include remote function calls, message logging, error reporting, device property monitoring,

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 11� of 86�

CORBA notification service, and high-speed data transport mechanisms. TAO [6] is the ORB used exclusively
for the CCC and CDP computers.

Both the CCC and CDP have ACS Containers which provide interfaces to their contained components and are
accessible as distributed nodes in the sense of the CORBA paradigm. They implement the porous container de-
sign pattern due to their real-time needs, i.e., the ACS Container allows for direct access to the components. It is
important to note that only the CCC is a ‘public’ device, i.e., it is the only device accessible to computers outside
of the Correlator subsystem. In general, the CDP is not accessed from external computers so as to minimize the
interfaces, although there may be exceptions to this rule, for example the Control system directly obtains CDP
computer monitor data from the CDP nodes and the CDP directly subscribes to the Control system’s antenna
blanking and WVR data channels. The CCC and CDP communicate with one another and the CCC acts as a
communication gateway to the CDP for configuration and control.

The correlator device follows a ‘configure-and-run’ model where the hardware is configured for a specific sub-
scan and operates in that mode until it is reconfigured or commanded to stop.

3.2 CCC Packages and Functional Overview
Figure 2 shows package diagrams for the CCC. The lines that connect the packages imply a functional interaction
between the packages. A brief summary of each package follows.

Geometric DelayCmd Dispatcher

Corr. Config Validation

Maintenance

Subarray Mgmt

CAN I/F

ArrayTime

TE Handler

TunableFilter
Digitizer Statistics

ACS Interface

Monitor

Figure 2 CCC Package Diagram

3.2.1 ACS Interface
This package provides an interface layer needed for common ACS services which provide a wrapper for the ACE
Orb (TAO), CORBA remote invocation services, logging services, configuration database, notification services
and ACS properties. This package has the following responsibilities:

• instantiates the distributed object component and connects to the ACS Container utilizing initial val-
ues from a configuration database

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 12� of 86�

• subscribes to the notification channel that supplies geometric delay events
• instantiates CORBA reference objects for the alma.Correlator.ObservationControl, alma.Correlator.

ObservationQuery, alma.Correlator.CCC_Monitor, alma.Correlator.Maintenance, and
alma.Correlator.ArrayTime interfaces.

3.2.2 Monitor
This package is responsible for constructing ACS monitor properties for the correlator hardware and the CCC. As
properties are self-contained within ACS, there is actually little to describe. We use CAN and memory proper-
ties. This package implements alma.Correlator.CCC_Monitor interface. The alma.Correlator.ObservationQuery
interface can be implemented as a set of properties. It is envisaged that this interface will most often be used in
debugging the correlator software during development and commissioning.

3.2.3 Command Dispatcher
This package is responsible for routing external commands to the correlator hardware or the CDP. Commands to
the correlator are routed through the CAN I/F package. This package also processes the correlator configuration
which can be found in the CorrConfigIDL.idl file.

3.2.4 Tunable Filter
This package is responsible for configuring and monitoring the tunable filters for a sub-scan. There are 2 TFBs
per antenna per baseband pair. Each TFB contains 32 digital FIR filters which can be tuned anywhere within the
2 Ghz baseband with a resolution of 30.5 kHz (2 Ghz/217). These filters (or sub-bands) can be overlapped and
combined, also referred to as stitching, to provide different resolutions and bandwidths. These stitched sub-bands
are referred to as spectral windows. There can be multiple spectral windows within a baseband.

3.2.5 LO Offsetting
This procedure is fully described in [7]. Briefly, to remove DC offsets introduced in the digitization process, the
first LO in one antenna is offset in frequency some small amount relative to another antenna. This offset is re-
moved in the TFB during a subscan configuration as part of the TFB sub-band tuning. The amount of offset is
fixed during a sub-scan with the magnitude dependent on an antenna index. The offset direction depends on
which sideband (USB or LSB) is used. LO offsetting can also be used to separate sidebands when using double-
sideband receivers.

3.2.6 Geometric Delay
This package distributes antenna-based geometric delay parameters to correlator hardware registers. The Control
system’s geometric delay model server supplies these delay parameters before a sub-scan and as needed through-
out the sub-scan. The digitizers at the antennas can accept 3 bits of fractional delay of one sample (at 4 x 109
samples/sec), i.e., 0 – 0.25 ns with a resolution of 32.25 psecs (0.25ns / 8). The correlator hardware accepts a 32-
bit coarse delay value which represents the remaining delay up to a value of ~1 second at a resolution of 1 sample
(250 picoseconds). Any residual delay which shows up as a phase slope across the band is removed in the CDP as
discussed in section 3.8.3.8.

3.2.7 Digitizer Statistics
This package is responsible for obtaining the digitizer statistics and delivering them to the Control system in order
to set the levels of the downconverter attenuators. The Control subsystem requests the digitizer statistics for a
given antenna and for a specific integration interval during a total power detector calibration. The interface be-
tween Control and Correlator will be a CORBA function call returning the relevant data.

3.2.8 Array Management

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 13� of 86�

This package manages the current array definitions used within the correlator hardware. There will be up to four
array slots which can be assigned lists of antennas. an array in this context means a list of CAIs which are config-
ured and controlled as a unit. Note that for the correlator, an array is identical to a sub-array. This package:

• Assists with correlator configuration validation.
• Associates array identifiers to a group of CAIs for correlator hardware configuration, etc.

3.2.9 Maintenance
This package is responsible for managing maintenance functions with the correlator hardware and CCC com-
puters. Maintenance implements the alma.Correlator.Maintenance interface as specified in the Correlator ICD.
Examples of maintenance for the correlator hardware would be the upgrade of FPGA images or microprocessor
code both of which are downloadable to on-board flash memory. Maintenance also performs diagnostics and re-
ports their outcome.

Thirdly, this package is responsible for configuration information related to the moving of an antenna to a new
pad. The physical antenna label is mapped to an appropriate correlator antenna input. This mapping also involves
an optical patch panel at the AOS building which connects optical fibers from a given pad to a correlator antenna
input. This information is obtained from the telescope configuration data base once it is updated by the Control
subsystem and then notifies the Correlator subsystem of any changes. Following this antenna move, a test proce-
dure will be run to ensure that the baseband fibers are correctly connected to the correlator antenna inputs. In this
procedure, the DTS transmitter sends a known pattern to the corresponding DTS receiver and verifies that the
pattern is correct. This test is managed by the Control subsystem.

Most maintenance functions occur when the correlator hardware and computers are off-line in a non-operational
mode. There will be station-based tests which test the signal path from the output of the filter card through the
correlator chips and to the LTA that can run while a given antenna is moving to a new position. This will not re-
quire reconfiguration of the correlator.

Obtaining digitizer statistics is another ‘maintenance’ function which can run during on-line mode. The filter
cards measure the count of samples at each level which are then transmitted to the Control subsystem as dis-
cussed in section 3.2.7.

3.2.10 CAN I/F
The CAN I/F package is really a group of packages: CAN_Cmds, CAN_Manager, and CAMBServer. These pack-
ages are responsible for the creation, formatting, transmittal, and reception of CAN messages to/from the CCC
and to/from the correlator-antenna master bus (CAMB) nodes (LTA, SCC, QCC, final adder, and data port inter-
face). In the Correlator subsystem CAMB consists of 5 individual physical CAN buses referred to as channels
that provide the CAN message medium for all control and monitor functions of the correlator. Each node is
uniquely identified by its serial number or alternately, channel and address within the specific channel. Because
of multicast message format the node addresses are limited to 0 – 47, but this should not be a problem as each bus
will have no more than 38 nodes – see [8] for details.

The CAMBServer package is responsible for providing a single point of access to all the channels of the CAMB,
transmitting CAN messages generated by the CAN_Manager and CAN_Cmds packages at the specified time-
stamps, and providing monitor and other CAMB reading functions. The CAMBServer package also provides the
CAN drivers, synchronization, and queuing mechanisms necessary for the orderly transmittal/reception of CAN
messages. To do so requires that some (hard real-time) software modules of the CAMBServer reside in kernel
space while others (soft real-time) reside in user space.

The CAN_Manager package is responsible for instantiating CAMB nodes that are responsible for handling their
node-specific messages and a single multicast message handler (see Detailed CCC Package Descriptions sec-

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 14� of 86�

tion). Additionally, the CAN_Manager package is responsible for encapsulating the functionality of each CAN
channel (e.g. keeping track of the status of each channel, resetting channels as needed, keeping lists of nodes at-
tached to the channel, sending/receiving CAN messages, etc.).

The CAN_Cmds package provides classes that encapsulate various commands that are then translated into one or
more CAN messages for use by instantiated nodes or the single multicast message handler. These classes have
been grouped according to their intended node destination type (i.e. LTA, SCC, QCC, final adder, or data port
interface) as shown in Figure 3.

CAMBServer

CAN MgrCAN Cmds

QCC CAN Cmds SCC CAN Cmds

Final Addr. CAN CmdsLTA CAN Cmds DPI CAN Cmds

Figure 3 CAN Interface Package Diagram

3.2.11 Array Time Interface
Array time is the fundamental time system of the interferometer utilizing TAI (International Atomic Time) and is
maintained centrally by a master clock computer (ARTM). Distributed clocks in the CDP and CCC are slaved to
the master clock and kept synchronous by utilizing an array-wide optical fiber network which transmits pulses
every 48 milliseconds called timing events (TE).

Also this package implements the interface specified by alma.Correlator.ArrayTime. Array time is set by first
having the ACC provide the distributed clock with a TimeSource object that it can use to request the array time of
the next TE from the ARTM. The ACC checks that the distributed clock’s array time is synchronized and, if not,
commands the distributed clock to retry obtaining the array time from the ARTM. For details on the control sub-
system side, see the Control subsystem ICD.

This interface is shared between the Correlator and Control subsystems.

3.2.12 TE Handler
This package encompasses the TE hardware signal handler. An interrupt service routine is triggered by each TE
pulse and updates the local clock’s internal version of array time by 48ms. The TE Handler must ensure that no
TE is missed as this obviously corrupts the distributed clock’s version of array time. A mailbox distributes all
relevant clock data (CPU frequency, time stamp clock at last tick, number of total ticks, absolute time at tick zero,
etc.) at every handled tick. If a TE is missed then the distributed clock switches to a degraded SOFT mode in
which the CPU frequency is frozen to its latest available estimate, and ticking of events is mimicked by sleeping

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 15� of 86�

the handler for 48ms each time. The ACC can query the handler state and, if necessary, cause the distributed
clock to reset itself when the hardware signal is available again.

The correlator hardware can provide both a 48ms and a 16ms tick to the CCC and CDP computers. The CCC will
use the 48 ms tick via its parallel port. Although the CAN nodes will not explicitly track array time, the CCC will
keep track of the CAN nodes' current TE count in order to specify a specific TE on which to execute a command.

3.2.13 Correlator Configuration Validation
There are two types of correlator configuration validation covered by this package: static and dynamic. Static
validation performs a simple check that all of configuration parameters are reasonable. This static checking is
written in Java and used by the Observation Preparation Tool (OT) to ensure that all configurations are within the
bounds of current correlator hardware capabilities, e.g., number of antennas, number of basebands, BBCs, etc.
Current and future correlator hardware capabilities reside in the TMCDB which is accessible to any subsystem
which needs this type of information. The static configuration validator can be used as a Java library directly by
the OT and as an ACS component by the CCC as there may be cases when Control creates correlator configura-
tions in manual mode that are sent directly to the Correlator.

Dynamic validation determines if the configuration fits into the current running state of the correlator hardware or
if two configurations scheduled for the same time conflict. This is a complex process which can only be evaluated
at run time and is handled by the CCC Command Dispatcher package.

3.3 Detailed CCC Package Descriptions
This section provides detailed class diagrams and descriptions of the more complex CCC packages.

3.3.1 CCC Command Dispatcher
The command dispatcher provides distribution of configuration and control commands for all internal devices of
the Correlator subsystem – the correlator hardware, CCC and CDP master. This division provides a single point
of control for external subsystems.

Subarray Mgmt

1 *+validateCmd()
+addCmdToQueue()

CCC_CmdDispatcher

+isValid()
+routeCmdtoCDP()

-cmdTimeTag
-rxTimeTag
-execTimeTag
-priority
-type
-routeToCDP

Command

CAN I/F

Figure 4 Command Dispatcher Package Class Diagram

The Command class is the base class for all commands that are received via the ACS CCC Interface package.
CCC_CmdDispatcher validates commands or flags and rejects erroneous commands. Time tags detailing when
the command was received (rxTimeTag), when it should be executed (cmdTimeTag), and when the command was
actually executed (execTimeTag) are assigned as needed. Note that commands are not scheduled to execute, this
is done by the CAMB_Server. If no time tag accompanies the command, it is put in low-priority queue which
transmits the message as soon as possible. It is important to note that no downloads are required for standard cor-
relator observing modes.

3.3.2 Geometric Delay

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 16� of 86�

This package is responsible for receiving quantized delays from the geometric delay event channel and distribut-
ing them to the correlator hardware.

At the beginning of a subscan and on a periodic basis during a sub-scan, say every 30 – 60 seconds, the geometric
delay model server, which runs at the OSF, transmits a set of geometric delay parameters with time stamps which
define a valid temporal range, antennas for which they apply, the fine and coarse quantized delay values, and a set
of total delay values suitable for polynomial interpolation for a given array. Each delay value includes an offset
in milliseconds relative to the overall starting time of the valid interval. From the Control system’s IDL, we have
the following:

struct FineDelayValue
{
 unsigned short relativeStartTime; //! Relative ms till these are valid
 octet fineDelay; //! Three bits of delay values
};
struct CoarseDelayValue
{
 unsigned short relativeStartTime; //! Relative ms till these are valid
 unsigned long coarseDelay; //! Quantized delay (250 ps samples)
};
struct TotalDelayValue
{
 unsigned short relativeStartTime; //! Relative ms till these are valid
 double totalDelay; //! 64 Bits of delay value
};
typedef sequence<FineDelayValue> FineDelayValueSeq;
typedef sequence<CoarseDelayValue> CoarseDelayValueSeq;
typedef sequence<TotalDelayValue> TotalDelayValueSeq;

struct DelayTable
{
 ACS::Time startTime;
 ACS::Time stopTime;
 TotalDelayValueSeq delayValues;
};

struct AntennaDelayEvent {
 ACS::Time startTime;
 ACS::Time stopTime;

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 17� of 86�

 string antennaName;
 CoarseDelayValueSeq coarseDelays;
 FineDelayValueSeq fineDelays;
 DelayTableSeq delayTables;
};

Coarse delays are sent to the correlator hardware after conversion to CAN messages. The time at which the mes-
sages are sent are deduced from the startTime and the relativeStartTimes by converting the array time to a TE
plus some offset in the range of 0 – 47 milliseconds after the specific TE. The fastest expected rate of update for
quantized (whole sample) delays for a given baseline is 172.8 milliseconds [9], but with arrays, the CCC could be
sending many delay updates per TE.

If delay events arrive late, i.e., their start time has passed, then an error is logged and correlator data are blanked
by the CDP (discussed below in section 3.8.1). The correlator retains the current quantized delay value until it is
updated. It is assumed that delay updates for a given antenna will be contiguous in time. Any gaps between the
stopTime of one delay event and the startTime of the subsequent delay event will be an error causing data to be
blanked (in the CDP) during that missed interval.

Care must be taken when new delays arrive due to the changing of a source in that old delays are replaced by the
new delays for the new source.

+sendQuantizedDelayAt()

ProcessDelayParameters

+subscribe()
+disconnect()

DelayEventChannel
-offsetMS : short
-delayValue : short
-arrayTime : unsigned long long(idl)

QuantizedDelay
1

*

CAN I/F

Figure 5 CCC Geometric Delay Class Diagram

ObservationControl::delayEventHandler subscribes to the geometric delay event channel (via DelayEventChan-
nel) receiving the TotalDelay events and performs two things. First, if the TotalDelayEvent is valid, i.e., received
in time, it sends it off to the CDP via a notification channel. Secondly, it extracts the relevant information from
the TotalDelayEvent, constructs QuantizedDelay which is then transmitted to the correlator hardware via CAN
commands. The sequence diagram for applying the geometric delay is shown in Figure 6. The geometric delay
model server supplies initial delay values before the sub-scan starts and as needed during the sub-scan.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 18� of 86�

CCC CHW CDPControlSubsystemModelServer

publishDelayModelEvents()

sendCoarseDelayAt()

publishDelayModelEvents()

Repeats throughout
sub-scan as needed

Subscan period
extends through
this time interval

sendCoarseDelayAt()

publishDelayModelEvents() publishDelayModelEvents()

Figure 6 Geometric Delay Sequence Diagram

3.3.3 Array Management
Array management essentially maintains a list of arrays each defined by an identifier, a list of antenna labels with
corresponding 0-based correlator antenna inputs. IMPORTANT: The antenna labels from the Control system
must be mapped to correlator antenna inputs (CAIs) which are inputs to the correlator chips. The CCC and
the Control system must coordinate the mapping of fixed antenna labels to pad identifiers which in turn must be
mapped to correlator antenna inputs. This mapping also involves an optical patch panel at the AOS building that
connects optical fibers from a given pad to a correlator antenna input. This mapping is maintained by the tele-
scope and monitor configuration database (TMCDB) and updates to the mapping will be signaled in the
alma.Correlator.Maintenance interface.

The AntennaList class maintains a sequence of the following structure:
struct antennaNumberMap_t
{
 string antennaLabel; //! ALMA-wide antenna label as a string
 short correlatorAntennaInput; //! the corresponding CAI
};
which maps antenna labels to CAIs. Correlator antenna inputs are used to configure the correlator hardware while
the corresponding antenna labels are used by the Control system when configuring the correlator for a subscan.

ArrayManager creates and destroys AntennaList objects as arrays are formed or deleted. Control notifies the cor-
relator when to create arrays with a name and list of antenna labels and when to destroy the arrays. Array names
are subsequently used for correlator configurations. It also assists in dynamic correlator configuration validation
by determining the intersection of two AntennaList objects. Recall that there are at most six arrays for ALMA, but
we can have a subscan which has all antennas in auto-correlation mode only which can be slightly offset from one
another. The resulting data sets, which contain all data in a single binary BLOB, can then be processed individu-
ally in post-processing software. There is no special requirements for the correlator software to produce this type
of data.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 19� of 86�

+createSubarray()
+deleteSubarray()
+mapAntennaNumberToCorrAntInput()
+doAntListsOverlap() : bool

SubarrayManager

+addAntenna()
+delAntenna()

-subarrayID[] : int
-antNumCAI[] : int

AntennaList

1 *

Figure 7 Array Management Package Class Diagram

3.3.4 Monitor
The Monitor package provides status information about the CCC software, hardware, and configuration. This
package contains three sub-packages: Correlator hardware monitor, correlator configuration monitor and CCC
hardware monitor.

The Correlator subsystem is regarded as a device of the Control system. It is the responsibility of the Control sys-
tem to retrieve all of the Correlator subsystem’s monitor data and save it in the MonitorStore component of the
Archive. This applies to CCC and CDP monitor points.

CCC HW Monitor Corr. HW Monitor CorrConfigMonitor

Monitor

Figure 8 CCC Monitor Packages

3.3.4.1 Correlator Hardware Monitor

These are the “standard” monitor properties for the correlator hardware like voltages, temperatures, etc. They are
managed through the QCC for each quadrant consequently providing 4 sets of voltages and temperatures.

It is important to note that the correlator hardware is self-monitoring in the sense that if an out-of-voltage, or
over-temperature condition is encountered which may damage the hardware, it shuts itself down. How much of
the hardware is powered down is still TBD. For now, the CCC monitoring software detects these error conditions
and delivers monitor data to the monitor store which can then be utilized to flag bad data. Data are blanked in this
case. This leads to ‘correlator quadrant blanking’ where data are blanked on a quadrant basis. The CCC then noti-
fies the CDP which quadrants are malfunctioning with the CDP ignoring any data from the affected quadrant.

3.3.4.2 CCC Hardware Monitor

Hardware dependent code retrieves monitor information from the CCC computer hardware. The current CCC
hardware uses a rack-mounted PC chassis which has voltage, temperature, and fan speed monitor data available
as properties.

3.3.4.3 Correlator Configuration Monitor

This monitor keeps track of correlator hardware configuration including but not necessarily limited to:

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 20� of 86�

• card serial numbers – every card in the correlator has a serial number chip to uniquely identify it, but

many of these cards are not CAMB nodes, although their identification information can be accessed
via LTA or SCC nodes. These cards are: correlator (8 per LTA), tunable filter bank (8 per SCC), sta-
tion (4 per SCC), correlator interface (8 per LTA), station interface (2 per SCC), power supply (2 per
SCC, 1 per LTA).

• FPGA checksums (16 per LTA, 8 per SCC, 3 per final adder, 3 per DPI card).
• firmware checksums (3 per each LTA, SCC, final adder card, DPI card, and QCC).
• quadrature parameters (16 per LTA, 8 per SCC). Quadrature parameters define signal phasing for in-

ternal correlator cables which connect station cards to correlator cards.
• QCC timing event tracking status, PLL and DLL status.

3.3.5 Correlator CAN Commands
The CCC utilizes a CAN interface to communicate with the correlator. It is important to note that the protocol
used by the correlator hardware as described in [10] is related to the ALMA M&C protocol defined in [11] in that
it supports some of the basic ALMA M&C functions like node identification and its master-slave architecture, but
not the timing specifications. More importantly, the correlator CAN protocol differs from the ALMA M&C pro-
tocol by providing multicasting of CAN messages to a range of CAN nodes and transmittal/reception of multiple
packet data structures. Multicasting is a powerful tool for the correlator as there are many nodes which require
identical information allowing efficient configuration and control.

The class diagram (Figure 9) shows the layout of basic CAN protocols as a base class and mix-in classes from
which specific commands inherit. The base class, CorrCanCmd contains generic functionality used by the CAN
I/F package. The leaves of the class hierarchy then define the specific command either as a multicast or singlecast
command with CANMulticast or CANSinglecast providing the necessary addressing capability.

The currently available CAN commands are listed in the Appendix [9.3].

Figure 9 CAN Commands Package Details

3.3.5.1 LTA CAN Commands

Software associated with CAN commands to configure, control and monitor the LTA, correlator, correlator inter-
face, and correlator bin power supply cards (see [12] for details).

+stream()

-controlCmd
-subArrayID : int
-validTimePeriod
-type
-priority

CorrCanCmd

+buildData()

LTAMulticastCmd

+buildAddressHdr()

CANMulticast

+buildAddressHdr()

CANSinglecast

+stream()

-controlCmd
-subArrayID : int
-validTimePeriod
-type
-priority

CorrCanCmd

+buildData()

LTASinglecastCmd

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 21� of 86�

3.3.5.2 SCC CAN Commands

Software associated with CAN commands to configure, control, and monitor the Station Control Card, station,
station interface, filter cards, and station bin power supply cards.

3.3.5.3 QCC CAN Commands

Software associated with CAN commands to monitor the quadrant control card which provide voltage, current,
and temperature monitors for each quadrant.

3.3.5.4 Final Adder Commands

Software associated with CAN commands to monitor and control the final adder card. The only CAN command
functions are serial number/checksum verification and FPGA personality/code downloads.

3.3.5.5 DPI CAN Commands

Software associated with CAN commands to monitor and control the data port interface. The only envisioned
CAN command functions are serial number/checksum verification and FPGA personality/code downloads.

3.4 Sub-scan Control Sequence
Figure 10 is a sequence diagram showing the time-ordered sequence for a configuration and start of a sub-scan
with the Correlator subsystem from the viewpoint of the CCC. Geometric delay configurations were covered ear-
lier and are omitted here. Note that there is some interaction with the CDP here. This will be discussed in further
detail.

The ACC uses the CORBA alma.Correlator.configureSubScan() function to send a complete correlator configu-
ration with an antenna list and a time stamp as to when the correlator starts using this configuration – this can be
viewed as 'start observing with a specified configuration'. The ArrayManager class defines an array from the an-
tenna list which subsequent configuration and control commands for the sub-scan use to refer to this array.

Once the configuration is received and validated by the CCC, it relays the configureSubScan() to the CDP. The
CDP then configures itself at the correct TE in synchronization with the correlator hardware being configured at
the same TE so that lags are correctly processed according to the new configuration. At the appropriate TE, the
CCC commands the correlator hardware to use the new configuration. The sub-scan continues until the requested
number of integrations is reached or the sub-scan is commanded to stop. The correlator hardware needs time to
set up internal program words, so the configuring and starting of an integration is two-stepped: first the configura-
tion is downloaded to the correlator followed by a ‘use configuration’ command delayed by 1.5 seconds. This
assumes that reception of the configuration command from the ACC takes place at least 1.5 seconds before ex-
pected usage.

This 1.5 second delay between the start of subscans can be avoided by pre-loading configurations. The correlator
has enough ‘configuration registers’ available such that four arrays can be have 2 configurations preloaded for
each array. The correlator can then be commanded to toggle from one configuration to another on a give TE
boundary for the duration of the subscan. One could also increase the number of configuration registers and pro-
portionally decrease the number of arrays. For example, pre-load 4 configurations into 2 subbarrays allowing
them to switch sequentially among the configuration registers on TE boundaries. The one caveat is that for each
group of correlator configurations to pre-load, one must still allow 1.5 seconds for each configuration, e.g., pre-
loading of 2 configurations must be done 3 seconds in advance of their use.

Important Caveat: I have recently (July 2008) found out that the ALMA-B correlator CANNOT switch between
2 FDM configurations without delay. It can switch between a TDM & FDM configuration without delay, but re-

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 22� of 86�

quires up to 1.5 seconds to switch between 2 FDM configurations. This must be brought to the attention of
the SSR, CONTROL & ObsPrep.

The total number combinations of arrays with different configurations must be less than 16. If the number of ar-
rays is S and the number of configurations is C, then

SC <= 16

Where S is 1 – 4 and C is 1 – 4. Note that we can have separate arrays which do not toggle the configurations. For
example, S is 2 and C is 4, two more arrays can be configured as long as they don’t change.

ACS CCC Interface SubArray MgmtCCC Cmd Dispatcher LTA CAN Cmds SCC CAN Cmds ACS CDP Interface

ConfigSubArray()

SubScanConfigValid

getAntennaList()

LTA_ConfigSubScan

CDP_ConfigSubScan

ACC

configureSubScanconfigureSubScan

At this point, correlator
has started sub-scan

Wait ~1
second for

configuration
to complete

SCC_startSubScan

LTA_startSubScan

SCC_ConfigSubScan

Figure 10 Sub-scan Configuration Sequence Diagram

3.5 Preloaded Configurations
A requirement exists with the baseline correlator and control software to enable fast switching between two or
more different correlator configurations and subscans for an array. The correlator hardware and software requires
about 1.5 seconds to configure itself for a subscan. There are some scientific cases where it is desired to switch
between 2 different configurations on a TE boundary without the 1.5 second overhead. This section describes the
approach to preload correlator configurations which can then be rapidly switched. Figure 11

shows this switching pattern between 2 configurations.

Configuration 1 Configuration 1 Configuration 1Configuration 2 Configuration 2 ...

TE0 TE1 TE2 TE3 TE4 TE5

SubScan 2SubScan 1 SubScan 3 SubScan 4 SubScan 5

Figure 11

Note that there can be up to 4 configurations to toggle among for a given subscan.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 23� of 86�

The current implementation of correlator configurations is that each subscan is configured for execution in the
future. The requirement is for the correlator software to receive a configuration at least 1.5 seconds before it is
executed. Many configurations can be queued up for future execution.

This method does not prevent a switching mechanism, but would be tedious for the CCL to implement. It would
require a loop like this:
for n in range(N_subscans,2):
 define correlator configuration n
 obtain start time of configuration n
 define dataOIDs for configuration n

 define correlator configuration n+1
 obtain start time of configuration n+1
 define dataOIDs for configuration n+1

 configureSubScan(array SA, configuration n, dataOIDs_n, start_time_n,…)
 configureSubScan(array SA, configuration n+1, dataOIDs_n+1, start_time_n+1,…)

The idea is to load the correlator configurations and all of the support parameters in advance each with an associ-
ated configuration identifier. Then the CCL explicitly commands the correlator to use a given configuration iden-
tifier plus subscan durations for a subscan. The goal is to allow as much flexibility to the users as technically fea-
sible. The Control subsystem has also requested this feature as it often reuses the same configuration for multiple
subscans and it is wasteful keep reloading configurations when all that is needed is to reuse an existing one. The
steps are (thanks to Robert Lucas on this):

• at the beginning of execution, the array is allocated a predefined number of correlator configurations.
• the script defines these configurations from the SB data, and preloads them in the correlator; later

they can be referenced by a specialized identifier,
• to start the execution of one or a set of subscans, the CCL passes to the correlator a list of subscan du-

rations and correlator configurations referred by identifier.

 config1 = configureCorrelator(parameters1)
config2 = configureCorrelator(parameters2)

beginScan()
do a scan with 4 subscans: 5 sec. on config1, 2 sec on config2, and
repeat once
listOfConfigs = [config1, config2, config1, config2]
listOfDurations = [2., 5., 2., 5.]
startToggledSubscans(number, listOfConfigs, listOfDurations)
endScan()

The following information must be defined for a subscan sequence and provided to the correlator:

• The correlator configurations which include dump and integration durations.
• The subscan duration for each configuration. Computations would be required to ensure that the subscan

durations are such that the subscan end on a TE boundary. Error checking in the correlator software
would double-check this.

• The start time of the whole sequence. The stop time can be computed by the duration of each subscan and
the number of subscans to execute.

• The data OIDs for all of the integrations and sub-integrations in all of the subscans.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 24� of 86�

• Scan, execute block , and subscan identifiers for all subscans.

Note that the data OIDs, scan, subscan and execution block identifiers are not defined in the CCL, but at script
execution time. Also, the list of configurations and durations can be of length one which allows for manual mode
scripts.

Here is the required information in IDL form:
// One of these for each configuration in the sequence of subscans to
// be preloaded before the subscan begins
struct SubScanConfig
{
 long calibrationSubscanId;
 Correlator::CorrelatorConfiguration corrConfig;
 CorrelatorCalibrationMod::CorrelatorCalibration acaSubscanType;
};
/// One entry per subscan
typedef sequence<SubScanConfig> SubScanConfigSeq;

/// One of these for each configuration in the sequence to be used at run-time
struct SubScanInfo
{
 long subScanNumber;
 long subScanNumber; //! the subscan number (1-based)
 long executeBlockNumber; //! the exec block number (1-based)
 asdmIDLTypes::IDLEntityRef executeBlockID;
 /** One data OID for each integration & sub-integration in the sub-scan
 ** The uidRange object provides the UIDs for this subscan
 */
 xmlstore::IdentifierRange uidRange;
 /// APC parameters
 Correlator::PathCorrResult_t pathCorrCoefficients;
 /// Configuration identifier to use returned from configureSubScanSequence()
 long corrConfigIdentifier;

 /// Type of subscan
 CorrelatorCalibrationMod::CorrelatorCalibration subscanType;
 /// ACA correlator needs these, ALMA-B doesn't set to 0 & “”
 ACS::TimeInterval relativeStartTime;
 /// ACA-specific calibration information
 boolean refreshHFSCdata;
};
/// The length of this sequence defines the number of subscans in
/// the scan. This can be 1 for manual mode observations
typedef sequence<SubScanInfo> SubScanInfoSeq;

// The function loads the sequenced configurations.
void configureSubScanSequence(in string arrayID, in CorrConfigSeq corrConfigs,
 out ACS::longSeq corrConfigIdentifiers)
 raises(CorrErr::InvalidConfigEx,
 CorrErr::InvalidArrayEx,
 CorrErr::NoAvailableCorrelatorSlotsEx);

/// Sequences of subscans are started (activated) using this function:
void startSubscanSequence(in asdmIDLTypes::IDLEntityRef executeBlockID,
 in ACS::Time subScanSequenceStartTime,
 in SubScanInfoSeq subScans)
 raises(CorrErr::InvalidStartTimeEx,
 CorrErr::InvalidSubScanInfoEx);

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 25� of 86�

Note that the startSubscanSequence()must be invoke a few (TBD) seconds before subScanSequenceStartTime
to allow for configuration of the CDP. There is an alternative mechanism in which the correlator starts the sub-scan as
soon as possible and returns the sub-scan start time to the caller, referred to as startSubscanSequenceASAP().

Aborting these subscans, that is, stopping them explicitly before their time runs out can be done with calls to
stopSubScanSequence(in ACS::stringSeq corrConfigIds), where corrConfigId corresponds to
the preloaded configurations. Once a subscan sequence is no longer needed, it is removed from the correlator
hardware and software memories via clearConfigurationIds().

There are a limited number of ‘configuration slots’ in the correlator which allow for this switching. Internally the
correlator has 16 slots available to switch among in this fashion. Configurations are loaded into the correlator
which it then builds ‘program words’ for the correlator chips in the array. Once these program word sets are
ready, the correlator can be commanded to use a given correlator configuration on a specific timing event. In R6,
we plan to support switching between 2 configurations per array.

Configuration of the correlator takes about 1.5 seconds per configuration and is multiplicative factor for all pre-
loaded configurations. Also the lead time for startSubscanSequence()depends on the number of pre-
loaded configurations to use. At this time, I believe that 1 second per configuration is sufficient.

IMPORTANT NOTE: Recently (April 2008) we discovered that there are limitations in the correlator hardware
which prevent switching between pre-loaded configurations with a delay. Apparently, part of the correlator firm-
ware can perform this switching on a TE boundary without delay, but other parts do not have this pre-loaded ca-
pability in place preventing a configuration switch without a 1.5 second delay. The correlator hardware require-
ments are still for the 1.5 second delay and will need to be changed in order to fully support the subscan sequence
mechanism developed for the correlator software.

3.6 Correlator Configuration XML
In February, a discussion of the representation of the correlator configuration was held. Participants included
members of Control, ObsPrep, ACA correlator, and Correlator subsystems. There has always been a problem
where Control receives a correlator configuration as an XML entity and then translates it to an IDL structure.
Control, rightly so, feels that there is no need for it to be a translator. Consequently, we agreed to the following.

Figure 12 Correlator Configuration Data Flow

• OT

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 26� of 86�

OT creates a correlator configuration using its internal representation, denoted here as 'Java Objects'. It vali-
dates the configuration directly using the VALIDATOR in a Java library. This Java validator library will re-
side in ICD/SharedCode and will be jointly maintained by ObsPrep & Correlator. An initial version will be
written by ObsPrep based on the currently implemented validator in ICD/CORR. The validator will require a
correlator type which provides information specific to a given correlator, e.g., ACA or BL and a 'version' of
BL correlator, e.g., OSF 2-antenna, first quadrant, etc. This is necessary because of slight differences among
the different correlators. OT serializes the configuration within an SB which Control will extract as XML.

• Control

Control obtains the XML entity representing the correlator configuration to Correlator via the configure-
SubScan() or configureSubscanSequence() commands. It is the responsibility of Control to extract the

appropriate configurations from the SB for a given subscan. Note that this requires an API change in Obser-
vationControl.idl, the primary interface between Control & Correlator. There is no translation from XML to
IDL done by Control

• Correlator

Correlator receives the correlator configuration(s) as XML entities directly from Control. The configurations
are first sent to the Validator Component, a Java container running on the ACC. This Validator Component
creates Java Objects from XML and then uses the Java Validator to validate Java Objects. The Validator
Component must accept an array of XML entity structs as Correlator may receive an array of configurations
from Control in a configureSubscanSequence() call so all the configurations can be validated at one time.

Once the configurations are valid, they are then translated to IDL structures for internal use by the Correlator.
This translator will be written in Java and run in a Java container along with the Validator Component. The
initial version of this XML-to-IDL translator will be based on the implementation already in place in Control.
The responsibility for maintenance of this translator will reside with Correlator with assistance from Control
and possibly ObsPrep.

3.7 CDP Packages and Functional Overview
Figure 13 and Figure 14 show packages for the CDP master and compute nodes respectively. A brief summary of
each package follows. Table 1 shows deployment details as to which packages exist on the (single) master or
(multiple) compute nodes. There are many packages which have functionality on both the master and the compute
nodes.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 27� of 86�

Master Data Publisher

TE Handler

Master CDP Maintenance ArrayTime Master CDP Monitor

Master Cluster Admin

CDP Master Node

Figure 13 CDP Master Node Package Diagram

CDP Node Interface

Node CDP Monitor

Lag Processing

SpectralProcessing

CDP Configuration

SubArray Config

HPDI 32

TE Handler

Node Cluster Admin

AtmoPhaseCorrection

Double sideband receivers

TE Scheduler ArrayTime

Node Data Publisher

Node CDP Maintenance

TunableFilter

ResidualDelay

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 28� of 86�

Figure 14 CDP Compute Node Package Diagram

Package Master
Node

Compute
Nodes

Notes

Array Time √ √ Identical code in both Node & Master
CDP Monitor √ √ Similar code in both Node & Master
CDP Maintenance √ √ Similar code in both Node & Master
Cluster Admin √ √ Similar code in both Node & Master
TE Handler √ √ Identical code in both Node & Master
CDP Master Node IF √
Master Data Publisher √
CDP Node Interface √
Node Data Publisher √
Spectral Processing √
Lag Processing √
HPDI 32 √
Residual Delay √
Atmospheric Phase Correction √
Sideband separation √
CDP Configuration √
Array Configuration √
TE Scheduler √ √

Table 1 CDP Node Package Deployment

3.7.1 Array Time Interface
This package is responsible for interfacing between the TE hardware signal and internal software packages that
require synchronization and time stamps. The software functionality duplicates the CCC array time interface dis-
cussed previously in section 3.2.11. If a compute node misses a TE, it must signal an error and blank its data
while it resynchronizes with array time from the ARTM.

3.7.2 TE Handler
This package is identical to what is used in the CCC, refer to section 3.2.12 for details. The CDP nodes obtain
their TE ticks from the correlator via the PCs’ parallel port.

3.7.3 CDP Monitor
This package is responsible for constructing ACS properties for the CDP. As properties are self-contained within
ACS, there is actually little to describe. The same comments as in section 3.2.2 apply here.

3.7.4 CDP Maintenance
This package is responsible for managing maintenance functions CDP computers. The maintenance package is
responsible for performing diagnostics and reporting their outcome. This package implements
alma.Correlator.Maintenance.

3.7.5 Cluster Administration
This package contains tools and procedures to monitor and administer the CDP master and compute nodes.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 29� of 86�

The master node monitors each compute node to check its health, i.e., ‘pinging’. If the master detects that a com-
pute node has rebooted, it logs this error and reconfigures the affected node.

3.7.6 CDP Master Node Interface
This package provides an ACS interface layer needed between the CCC and CDP. This is a ‘private’ interface in
that it should only be used by the CCC. It uses the namespace, alma.CorrelatorPrivate, to differentiate it from the
‘public’ ACS interface that external software subsystems can use. CDP Master Node determines what target
compute nodes need the current command and routes it to them. Although a history of commands is kept here, no
queuing is performed, i.e., commands are immediately sent out. Also CDP configurations are saved here in case a
compute node needs its configuration parameters reloaded in case the compute node reboots.

This package is responsible for interfacing functional code with the CORBA interface and has the following re-
sponsibilities:

• constructs and manages the distributed object component and connects to the ACS container.
• obtains references to the MACI manager.
• routes commands from the CCC to the appropriate compute nodes.
• creates the notification channel which publishes integration events.

3.7.7 Master Data Publisher
This package publishes spectral and channel average data to the BDD using the ACS BulkData package. As each
compute node completes the processing of spectral data, it transmits its results to the master node. The master
node then assembles all of the baseline results for a given array and integration and publishes it to the BDD. The
bulk data format is XML headers plus binary tables. The format for the binary data output is found in [13] and
becomes part of the ALMA Science Data Model [14].

The Master Data Publisher also sends summary data of each integration and sub-integration for each sub-scan to
the DataCapture component of the Offline subsystem. This interface is defined by the SubScanCorrelatorData
IDL structure in ICD/CORR.

3.7.8 CDP Node
This package provides an ACS interface between the CDP master and CDP nodes. It exposes the
alma.CorrelatorPrivate.Node interface. Some of the functionality here includes:

• routes commands to the appropriate CDP node packages
• subscribes to notification channels that supply antenna blanking, geometric delays and WVR receiver

values.
• constructs Bulk Data streams and flows to the master node for delivery of spectral and channel aver-

age data.
Each CDP node implements all of these packages.

3.7.9 Node Data Publisher
This package is responsible for delivering spectral results for each integration and channel average results for
each sub-integration. Each binary block of data contains a header which uniquely identifies it by baseline, polari-
zation product, APC corrected/uncorrected, correlator bin, integration ID integration duration and integration
time. This header information is required by the CDP Master node to assemble the final output it sends to the
BDD. These data are transmitted from the CDP Node to the CDP Master via the ACS BulkData system due to the
high data rates. Each CDP node computer creates one stream which can hold up to 12 flows; one for spectral data
and one channel average data for up to 6 arrays.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 30� of 86�

3.7.10 Spectral Processing
This package manages processing of lag sets into raw spectra. Lag sets are received from the Lag Processing
package and converted to spectra. Spectral processing details are discussed in section 3.8.3. Note that for the tun-
able filters, extra processing steps are required as found in [15] which are:

• 4- or 16-level quantization correction
• Smoothing or windowing function applied
• ½ channel frequency shift
• Bandpass calibration
• Scaling sub-band for relative total power
• Sub-band stitching

3.7.11 Lag Processing
This package is responsible for buffering raw lags from correlator hardware. It receives the raw lags from the
HPDI32 package after each correlator dump and queues the lags in the order received and by correlator bin num-
ber. These lags remain in this fashion for a certain period (nominally one second) allowing for antenna blanking
which can remove lags as needed (see section 3.8.1 for details). The output of this package is groups of lags
called ‘lag sets’ which are processed into spectra with the Spectral Processing package.

3.7.12 HPDI 32
Raw lags are sent from the correlator LTA via 32-bit data port interfaces to each compute node. Low-level drivers
(running as real-time tasks within RTAI) transfer the raw lag data to a shared memory area via DMA transfers
and signal other tasks to begin the lag processing once the DMA transfer completes.

3.7.13 Residual Delay
This package is responsible for receiving TotalDelayEvents from the CCC and removing any phase slope across
the band pass due to any residual delay not removed by the digitizer or correlator hardware.

3.7.14 Atmospheric Phase Correction
This package performs atmospheric phase correction. The Control subsystem provides path length correction co-
efficients from TelCal along with information to transform the frequencies from sky frequencies to intermediate
frequencies as part of a sub-scan configuration. The CDP subscribes to an event channel where each antenna pro-
vides its WVR receiver values. The CDP applies the path length correction to each channel of the spectral results
with the receipt of each new set of WVR receiver values.

3.7.15 Sideband Separation
The use of double sideband receivers requires that separate phase states must be binned and summed separately.
Also sideband separation can sometimes be used on single sideband receivers to measure the image sideband re-
jection. Four bins are required for the 0°, +90°, and -90° combinations. As the correlator hardware is unable to
calculate the -90° combinations, the CDP is responsible for calculating and summing them.

An interface is required to determine the phase of each antenna for each 16 msec sample, (e.g. the start time and
64 patterns, each 64 states long). The baseline phase is computed from the antenna phase (90°, 0°, -90°) with the
results summed into two bins (90°, 0°) and normalized correctly. The -90° is a subtraction in the 90° bin. Once
the integration is complete, the upper and lower sideband visibilities are formed with:

Vlower = (V0° + i*V90°) / 2 Vupper = (V0° - i*V90°) / 2

The signs may depend on the conventions of the LO system.

From Ed Fomalont:

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 31� of 86�

Let's start a double side-band data streams in the signal to two antennas 0 and 1. The correlator multiplies the two
streams and integrates them with various delay offsets i to obtain the two lag functions C0[01] and C0[10] .
These are related to the Fourier transform of the complex spectrum () ()ijR+iR 21 :

[]() []()() () ()ijR+iR=iC+iCFT 2100 1001 −

Now, you can put a 90 degree phase shift in the local oscillator used for the second telescope (data stream) and
correlate this data to get the set of lag data []0190+C and []1090+C

[]() []()() () ()ijR+iR=iC+iCFT ++ 439090 1001 −

Now, you can put a -90 deg phase shift in the local oscillator used for the second telescope (data stream) and cor-
relate this data to get the set of lag data C− 90[01] and C− 90[10] ,

[]() []()() () ()ijRiR=iC+iCFT 659090 1001 −−−−

R5= − R3 ; R6=− R4

The upper (U), lower (L) side-band response is then (see Thompson et. al. (6.26, 6.27)[17]:

 U: () ()[]32410.5 R+Rj+RR −
 L: () ()[]32410.5 RRj+R+R −

Fourier transform of both sides give

 []() []() []()[]iCiC=iC +upper −− 10010.501 900

 []() []() []()[]iC+iC=iC +upper −− 10010.510 090

 []() []() []()[]iC+iC=iC +lower −10010.501 900
 []() []() []()[]iC+iC=iC +lower −− 10010.510 090

The bottom line procedure is:

Correlate with phase difference = 0 and get lags between antenna 0 and 1: []()iC 010 and []()iC 100 . Note that
phase difference of 0 and 180 are identical and are produced automatically. Thus the lags for C0 will be the aver-
age of the two: C0 = (C0 + C180) / 2

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 32� of 86�

Correlate with phase difference = +90 and get lags: []()iC+ 0190 and []()iC+ 1090
Correlate with phase difference = -90 and get lags: []()iC 0190− and []()iC 1090−

Assuming that C0 lags are done for two cycles, but the C+90 and C-90 lags are done in one cycle, then upper side-
band lags then should be:

 []() []() []() []()[]iC+iCiC=iC +upper 1010010.501 90900 −− (1)

 []() []() [] []()[]iC+CiC=iC +upper 1001010.510 09090 −− (2)

Lower sideband lags then should be:

 []() []() []() []()[]iCiC+iC=iC +lower 1010010.501 90900 −− (3)

 []() []() []() []()[]iC+iC+iC=iC +lower 1001010.510 09090 −− (4)

3.7.16 CDP Configuration
This package is responsible for receiving, tracking and managing the configuration of the CDP. Configurations
arrive at the master node as an IDL structure which is derived from the HLA ALMA Project Data Model and is
sent off to the appropriate compute nodes where they are queued and applied at the correct array time.

Each compute node handles ¼ of the baselines for a given correlator quadrant. The master node tracks which
compute nodes have which configurations to facilitate the ‘assembly’ of spectral data packets from individual
compute nodes into spectral data blocks for an array to be sent to the BDD. This assembly process is part of the
Master Data Publisher package.

3.7.17 Array Configuration
Sub-scan configurations are specific to an array and a correlator quadrant. Much of the discussion of arrays in
section 3.3.3 applies here. It is important to note here that the correlator antenna inputs must be mapped to the
antenna labels in the output data in order to recover the original array information.

3.7.18 TE Scheduler
The TE Scheduler package receives scheduling requests and executes them at the correct time based on the array
time being managed by the TE Handler. The scheduler provides an interface for requesting semaphores that are
given (signaled) in a periodic or one-shot fashion at a programmable offset in milliseconds after every time event.
In this way user tasks can synchronize independently to the same time base. When the TE Handler switches to
SOFT mode the scheduler will actually keep giving the already requested semaphores, causing no disruption to
the user tasks. It is the responsibility of the ACC, or some higher level entity, to detect the degraded state and stop
gracefully before forcing the distributed clock to re-synchronize.

3.8 Detailed CDP Package Descriptions
This section provides detailed class diagrams and descriptions of the more complex CDP packages.

3.8.1 Lag Processing
At each dump, a set of raw lags are transferred via DMA to one of two memory buffers. Once the DMA transfer
is complete, processing of the memory buffer begins.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 33� of 86�

Each raw lag set from the correlator hardware delivers data in a preset order depending on the baseline using
CAIs, the polarization product, bin number, number of lags and other information. This information is carried
through to the spectral processing phase to determine how spectra are summed and becomes part of the header
information when the spectral data are published.

Figure 15 Lag Processing Package Details

Each antenna computer (ABM) publishes status information for each 48 ms period to an antenna blanking event
channel to which the CDP subscribes. If a negative status or no status information is received for a given time
period, the CDP discards the affected lag sets. Due to the potential latency in the notification channel, the Anten-
naBlanking class will wait up to one second in order to not miss any blanking events. This introduces a one sec-
ond latency in the data throughput, but it does not extend the integration duration. Note that this wait interval is a
programmable value which can be decreased from one second as we better understand the throughput and la-
tency issues with the ALMA Ethernet networks. Also, this delay may affect the TelCal subsystem.

The blanking event structure is defined as follows:
/** \struct antenna blanking structure sent by each antenna for a period of
 ** 21 TEs. Each antenna will accumulate the blanking flags for every 21 TEs
 ** which is 1.008 seconds. Then it will set the teOffsetBitMask to a '1' or
 ** '0' signifying that TE interval (relative to the start time) is valid or
 ** not.
 ** Each bit represents one of the 21 TE intervals w/ the LSB being TE[0] to
 ** bit 20 being TE[20]:
 **
 ** TE Interval: TE[20]|TE[19]| ... |TE[2]|TE[1]|TE[0]|
 ** Bit Value: 1 | 0 | ... | 0 | 1 | 1 | some blanking here
 ** Bit position: 20 19 2 1 0
 */
struct antennaBlankingEvent_t
{
 ACS::Time timeStamp; ///< Time stamp of the begining of the event interval
 string antennaID; ///< Antenna ID as a string, e.g., 'ALMA001'
 long teOffsetBitMask; ///< The bitmask for each TE interval LSB is the 1-st TE
};

+getValidEvents()
+isPeriodValid()

AntennaBlanking
-numberOfBins
-binSequencing

BinMgmt

1

+subscribeToEvents()
+disconnect()

AntennaBlankingEventChannel

1

+sumLagsByBin()
+sendLagSetToProcess()

LagProcessing

-baselineFlag
BaselineFlagging

1
1

1
1

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 34� of 86�

This structure extends for a duration of 21 TEs (1.008 seconds). Each bit in teOffsetBitmask represents one TE
interval after the timestamp for a given antenna. A bit value of 1 means to blank whereas 0 means to not blank
data.

Blanking introduces some subtleties regarding the integration times and durations which must be recorded for
each integration:

• Requested integration duration – the observer sets this integration duration
• Actual integration duration – the requested duration minus any blanked dumps
• Integration start time – the time stamp that the integration is supposed to start
• Integration centroid time – the average time that non-blanked data was integrated. The timestamp for

that data record needs to indicate the exact centroid of the data.
Also there is a provision to blank an entire array if, for example, a local oscillator malfunctions. In this case the
following structure would be used:
struct arrayBlankingEvent_t
{
 ACS::Time timeStamp; ///< Time stamp of the begining of the event interval
 StringSeq antennaIDs; ///< Antenna IDs is array
 long teOffsetBitMask; ///< The bitmask for each TE interval LSB is the 1-st TE
};
This is similar to the previous event, but the individual antenna is replaced by a sequence of antenna labels on
which to perform blanking.

The BinMgmt class is responsible for identifying raw lag sets by the correlator bins. There are two types of
binning envisaged. Antenna-based switching where, e.g., the nutator switches positions and lags are placed into
separate bins in the correlator hardware and consequently the CDP for each nutator position. Note that there
should be a bin which collects the data while the nutator is moving. This bin’s data can be discarded. Baseline-
based switching is used where sideband separation is desired and different correlation products of 90° phases for
a baseline are kept in separate bins. All bin switching schemes must be synchronized with the correlator bin
switching timing boundaries of 16 ms.

Figure 16 Lag Processing Sequence Diagram

AntennEventChannelGetLags LagProcessing

Raw lags DMA'd
from DPI

assembleIntegrations()

sumIntoCorrectBin()

SpectralProcessing

setValidEvents()

retrieveRawLags()

doSpectralProcessing()

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 35� of 86�

BaselineFlagging allows for flagging a dump. If a certain part of the correlator hardware, e.g., a station card or
correlator chip, fails a test, then the lags corresponding to the affected baselines can be flagged as ‘bad’ or ‘ques-
tionable’. The lags are still converted to spectra, but these flags are provided to the DataCapture system of the
Offline system which can then discard the data if desired.

3.8.2 Correlator Flagging
Here we present the various baseline flags which are sent to the ALMA archive via the binary data at each inte-
gration or sub-integration or to Data Capture at the end of a subscan. The Antenna/Baseline column represents
how the flags affect the data, i.e., on an antenna or baseline basis. Many of the flags are antenna-based, but affect
all baselines associated with a given antenna.

Flag name Action Antenna/
Baseline

Description

WVR Receiver
Values

Flag Baseline WVR data not received by an antenna's WVR receiver.
This affects the APC corrected data for all baselines as-
sociated with the antenna

TFB Scaling Fac-
tor

Flag Baseline TFB scaling factors for a given antenna were not re-
ceived. This affects all baselines associated with the an-
tenna. It also affects the spectral window for the given
scaling factor.

Blank Integration Blank Baseline Control delivered blanking signal(s) for a specific antenna
for an entire integration (or sub-integration) leading to no
data for the integration interval.

Correlator Chip
Error

Blank Baseline One or more antenna inputs in a correlator chip are bad.
All baselines using the affected antennas are blanked.

Missed blanking
event

Blank Baseline Blanking signals which are expected for a given time in-
terval and antennas are not received in the blanking
channel. Data are blanked for all baselines of the affected
antennas in the missed interval .

Missed delay
event

Blank Baseline Antenna delay data which is expected for a given time
interval is not received in the delay channel. Data are
blanked for the missed interval.

Antenna Flag Flag Antenna Control delivers antenna flagging info which is passed
onto DataCapture

Polarization Flag Flag Antenna Control delivers polarization flagging info which is passed
onto DataCapture

Baseband Flag Flag Antenna Control delivers baseband flagging info which is passed
onto DataCapture

Bulk Delay Flag Flag Baseline Correlator antenna-based station card increments bulk
delay (64 samples) in a sub-scan causing a phase error
in an integration. All baselines using the affected antenna
are flagged.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 36� of 86�

Table 2 Correlator Flags

3.8.3 Spectral Processing
Once a lag set is processed, it is ready to be converted to a spectral data block. With the advent of the TFB, the
specific steps for processing lags from the NRAO FIR filter are a little different then when processing lags from
the TFB and are noted in the following subsections.

Figure 17 shows the classes which are involved with the steps of this processing. The order of the steps is: lag
normalization, quantization correction, windowing, FFT, atmospheric phase correction, fine (or residual) delay
adjustment, spectral averaging and channel averaging. Figure 18 is a sequence diagram for the spectral processing
which shows the order of processing steps.

Figure 17 Spectral Processing Package Details

SpectralProcessing

+applyNormalization()
+Vs_Subtraction()

-Vs
SpectralProcessing::NormalizeLags

+applyCorrection()
+updateCorrectionParameters()

-quantizationEfficiency
SpectralProcessing::QuantizationCorrection

+calculateWindowCoefficients()
+applyWindow()

-windowType
SpectralProcessing::Windowing

+createPlan()
+doFFT()

-fftwPlan
SpectralProcessing::FFT

+removeResidualDelay()

-totalDelay : double
-quantizedDelay

SpectralProcessing::FineDelayAdjustment

+calcChannelAverage()

-startChannel
-numberOfChannels
-publishInterval
-startTime

SpectralProcessing::ChannelAverage

+subscribeToCoefficientsChannel()
+subscribeToValuesChannel()
+applyCorrection()

-correctionPeriod : int
-coefficients : double
-values : double

SpectralProcessing::AtmosphericPhaseCorrection

+sumSpectra()

-startChan
-numChans
-bins

SpectralProcessing::SpectralAverage

1

1

1

1

1

1

1

1

1

1

1
11

1

1

1

+normalize()

-spectraAntenna0
-spectraAntenna1

SpectralProcessing::SpectralNormalization

1

1

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 37� of 86�

Figure 18 Spectral Processing Sequence Diagram

3.8.3.1 Lag Normalization

Lag normalization is a multi-step process:

The cross spectra are normalized to unity by dividing each lag value by the square root of the product of the zero
lag values for the corresponding antennas, while the auto spectra are normalized by just dividing by the zero lag
value. This is discussed in "Spectral Normalization" of [16], and would produce lags where 100% correlation has
a value of unity, except for the presence of multiplication table bias which is dealt with in the second step.

In this second step, a multiplication bias introduced at the correlator chip level in its multiplication table when
calculating the correlation function is removed. This bias removal is sometimes called ‘Vs subtraction’. See sec-
tion 9.2.1 for this equation.

A final step is the gain correction using the digitizer statistics. The digitizer statistics values are obtained via the
CCC and delivered to the appropriate CDP compute node. The basic process is discussed in section 8.5 of [17].

For the TFB, there is no normalization as this is done by the quantization correction.

3.8.3.2 Quantization Correction

This step performs quantization correction on the lags. The algorithm for quantization correction is to first per-
form a 2-bit, four-level correction followed by a 3-bit, eight-level correction. For the TFB, currently a 2-bit, four-
level correction will be done as the eight-level correction is small relative to the four-level correction. See F.
Schwab’s GBT memo [18] which discusses his correction methods.

The TFB has a 3 x 3 bit mode with 9 levels and 4 x 4 bit mode which will require a 16-level correction. We are
working with F. Schwab on these corrections.

3.8.3.3 Windowing

Apply a smoothing function to the lags. Normally a Hann (or Hanning) window is used, but the following win-
dows are also available: Uniform (no window), Hamming, Welch, Bartlett, Blackman and Blackman-Harris. See
section 9.2.6 for the equations for each of these windowing functions.

3.8.3.4 FFT

The correlation functions are Fourier transformed to give spectra. The FFTW algorithm from MIT [19] is used
due to its optimizations and fast calculations. It has an important efficiency which creates a ‘plan’ for a given size

BandPass Corr.WindowingQuant.Correct FFT ResidualDelay IntegrationAver

doWindow

LagNormalization

doAtomCorr

AtmoCorrect

doQuantCorrect

doFFT

SubbandStitch

doSubbandStitch

doResidualDelayAdj.
doBandPassCorrection

doIntegAver

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 38� of 86�

of FFT. This plan is relatively slow to calculate which is done once and when complete, the actual FFT calcula-
tions are very fast. In the future, we will be investigating the AMD Core Math Library (ACML) for performance
which has an optimized FFT [20].

For the TFB, a ½ channel shift is performed on the lag channels before the FFT. This moves the center frequency
of each channel from the leading edge to its center. This ½ channel phase shift can be optional, i.e., if the number
of overlapping channels is even when stitching together the sub-bands, then the shift is performed otherwise the
shift is not done for an odd number of channels.

3.8.3.5 TFB Subband Stitching

For the TFB, adjacent subbands must be stitched together (also called ‘re-gridding’). A concept is introduced
here, the ‘spectral window’ which defines a set of TFB subbands which share a common resolution and form a
spectral window within the total 2 GHz bandpass. There can be up to 32 spectral windows which are defined by a
bandwidth, resolution, center frequency and number of polarization products. The 62.5 MHz TFB subbands
which comprise the given TFB configuration are then overlapped with some channels discarded and stitched to-
gether to from a contiguous bandpass. See [15] for details.

3.8.3.6 TFB Bandpass Calibration

For the TFB, a bandpass calibration is performed which corrects the bandpass for the filter characteristics. These
are constant values for a given TFB mode and are calculated when a new configuration is received. See [15] for
details.

3.8.3.7 TFB Scaling Calibration

For the TFB, each subband must be scaled by the total power measurement. This total power value is determined
from registers on the TFB by the CCC and provided to the CDP node processing software. This scaling removes
‘platforming’ differences between the subbands in the presence of strong spectral lines.. These scaling measure-
ments will be done via a specific calibration command in the command control language (CCL). The scheduling
block script, based upon the observation type, will insert this command as needed.

3.8.3.8 Residual Delay Adjustment

As discussed in section 3.2.6, the majority of the geometric delay adjustment is performed in hardware at the digi-
tizers and correlator. Nevertheless, small errors in the geometric delay resulting from the discrete nature of the
digital delay are accumulated over the course of the integration. These residual delay errors are removed in the
CDP.

The spectrum is corrected for the average delay error over the integration by removing the residual delay which is
defined as the difference between the unquantized delay and the quantized delay integrated over the fine delay
interval, i.e., the integration duration.

The quantized delay includes the quantized delay provided by the model server which has a resolution of 31.25
picoseconds (1/8 of 1 sample period of 0.25 ns) plus the delay offset for a given antenna due to its cable distance
from the array center point (the geometric center) to the correlator.

The residual delay is simply:

 (1)

D n D n D nres quant() () ()= −

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 39� of 86�

where D(n) is the total, unquantized delay provided by the geometric delay model server and D(n)quant is the total
quantized delay over the integration interval. The delay model provides delay information for each antenna based
upon its distance from the array’s geometric center.

As delays are baseline-based, the actual residual delays are the difference of two antenna values (antenna n and
antenna m) for a baseline, leading to:

 (2)

Dbaseline can be used to apply the residual delay correction.

Delay events are transmitted by the delay model server that covers a certain period of time, nominally 10 seconds.
Delay events are received by the CCC and routed to the CDP. The events are contiguous in that there is no tem-
poral gap between one delay event and the next. After the end of a delay event’s stop time, if the CDP does not
receive a subsequent delay event whose start time immediately follows the previous event’s stop time, then the
CDP blanks the lag data. The CDP continues to blank data until a valid delay event is received.

This procedure ensures that no bad data due to are delivered the archive. Also delay events are solely received
from the CCC and applied to the hardware if the delay event timestamps are valid. If they are invalid, e.g., the
events arrive too late, the CCC does not apply the quantized delay to the hardware and does not deliver the delay
event thus generating a temporal gap for the CDP which prompts it to blank correlator data.

Figure 19 shows a stylized representation of an array of antennas and relationship of each antenna to the ‘geomet-
ric center’. The actual geometric center may actually be one of the antennas. The line between the geometric cen-
ter and the antennas represents the cable offset, a fixed length for each antenna.

Figure 19 Geometric Center

There is also a baseband and antenna dependency to the fixed delay. As there is only one digitizer for all base-
bands, there are differences for each antenna through each baseband. The TMCDB will contain a table which
provides the fixed delay for each antenna and baseband combination as such:

‘Geometric
Center’

D D n D mbaseline res res= −() ()

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 40� of 86�

 A0 A1 A2 A3 A4 A5 A6 …
BB_1 0 0 0 0 0 0 0
BB_2 10 50 30 240 20 30 18
BB_3 14 45 25 300 30 40 20
BB_3 10 35 20 310 20 35 25

Fore values less than 250 ps, this correction is handled solely by the CDP nodes in its residual delay correction. If
some values are more than 250 ps, then the CCC will have to add this fixed delay to that antenna/baseband with
the remainder being applied to the residual delay. For example, BB_3 & A3 have a fixed delay of 300ps. Thus the
CCC would add one extra sample (250ps) to its delay and the CDP would add 50ps (300-250) to its correction.

3.8.3.9 Atmospheric Phase Correction

The path length correction due to the atmosphere as a function of the baseband frequency is done in the CDP
nodes. For each antenna and each frequency band, correction coefficients are obtained from telescope calibration
subsystem via the control subsystem. WVR channel values are published from each antenna’s WVR receiver. The
CDP utilizes the coefficients and data stream and applies the atmospheric phase correction to the spectra.

The path length correction coefficients are published before a sub-scan starts, when a sub-scan starts and at peri-
odic intervals during which they are valid. The WVR channel values are published about every ½ second which is
the frequency that the corrections are applied.

The correction is of the form (note that these are preliminary forms which will be revised in future versions of
this document):

Φni = φi {Cn0Vn0 + Cn1 Vn1 + Cn2Vn2 + Cn3 Vn3 + Cn4Vn4 } (3)

Φmi = φi {Cm0Vm0 + Cm1 Vm1 + Cm2Vm2 + Cm3 Vm3 + Cm4Vm4 } (4)

Φi = Φni Φmi
* (5)

Where:

Φai is the atmosphere – corrected phase for a specified antenna in a baseline n-m for the ith channel

φi is the phase at the i-th channel for baseline n-m.

C0-4 are the atmospheric path length correction coefficients (converted to phase) for a specified antenna (n or m)
supplied by the telescope calibration system V0-4 are the WVR values from a specified antenna’s (n or m) WVR
receiver

Equations (3) and (4) provide phase corrections for antenna n and m. Equation (5) shows the correction for an-
tenna n multiplied by the complex conjugate of the correction for antenna m producing the final phase correction
for each channel in the spectral window.

It is important to note that APC and non-APC data are integrated separately. At the end of each subscan, the CDP
aligns the WVR values to integration and sub-integration time boundaries and sends them to the data capturer for
the array which becomes part of the ASDM for the subscan. TelCal uses this information to produce a new set of
coefficients for the next subscan.

3.8.3.10 Integration Averaging

This step simply adds spectra for each dump into an integration accumulator with APC and non-APC data
summed separately. The integration duration is an integer multiple of correlator dumps and once the integration
duration is complete, the resulting spectral data are passed on to the DataWriter component (see section 3.8.4).

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 41� of 86�

Integration spectral averaging allows one to decrease the final data output rate of the correlator to meet the 60
MB/sec. specification.

3.8.3.11 Spectral Channel Averaging

Adjacent spectral channels can be averaged together to reduce the number of spectral channels. The number of
spectral channels to average is specified in the correlator configuration and must be a power of 2 such that it
evenly divides the total channels. Spectral channel averaging is done as a final step before delivering the spectral
data to the archive.

3.8.3.12 Channel Average

This class performs periodic channel averaging on the spectral data sets. A complete discussion of channel aver-
aging is provided in section “Channel Average” of [16], but is paraphrased here:

The channel average for the cross correlation spectra is the vector average of the complex visibilities across the
spectrum. For a continuum source the channel average has the same value as the channels, but with reduced
noise. To remove any phase slope across the band, residual delays are first removed before the channel average is
calculated.

The channel averaging configuration defines a rate at which the channel averaging is performed and a set of spec-
tral channels over which to calculate the average (up to 32 separate ranges can be defined within a 2 GHz base-
band). The spectral channels are chosen to avoid the edges of the bandpass and sometimes selected to match a
spectral line (maser). There is one channel average value per defined channel average region. The integration du-
ration ranges between 0.5 – 1.0 seconds such that there are an integral number of channel average integrations
within a spectral integration duration. As the APC correction interval is generally larger than the channel average
interval, only the APC-corrected results are used.

3.8.4 Data Publishing
Finally, the spectral and channel average data are published separately in two stages. First the compute nodes
send spectral and channel average data to the master node and then the master node publishes data to the Archive.
The compute nodes’ job is straight-forward, they just publish the data blocks with identifying headers to the mas-
ter node using the Bulk Data module of ACS [21].

The DataWriter, in the master node, assembles the baselines of an integration for a specific array. The XML
header and binary data are joined together in the appropriate data structure. The spectral data blocks and channel
average data are then published using the DataPublisher class.

A multicasting mechanism is proposed where the CDP publishes to the BDD which in turn multicasts the data to
three subscribers: (1) the Archive, (2) the telescope calibration subsystem and (3) the quick look pipeline via a
real-time ASDM filler. The Bulk Data module of ACS [21] which is based on the CORBA Audio/Video stream-
ing service.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 42� of 86�

Figure 20 Data Publisher Package Details

The autocorrelation spectra are always taken and archived. These passbands may be used in the calibration proc-
ess and are certainly important for debugging the front ends, filters, digitizers and data transmission system. They
are a free spectrum analyzer.

As discussed earlier, the output consists of XML headers with binary data. The binary portion of the data is stored
in a fashion that avoids rotation of the data by pipeline processing computers to preserve compatibility with the
ALMA Science Data Model (ASDM) [14] for an efficient quick-look operation. The byte order of the binary
data will nominally be Little Endian (Intel), but the header will explicitly specify the byte ordering. The following
streams are produced by the Correlator subsystem for each array:

• Spectral Data: XML meta-data + actual integration durations and times + binary data go to the BDD
• Channel Average Data: XML meta-data + actual sub-integration durations and times + binary data go

to the BDD
• ASDM Main table containing spectral and channel average information go to the DataCapture com-

ponent.
The purpose of DataCapture is to bridge the information regarding the telescope operation to the science output
for each subscan. The Control subsystem creates a DataCapture component for each array notifying all interested
subsystems of the new component via a notification channel. The CDP Master subscribes to the channel and,
when a new DataCapture component is created, obtains a reference to the CORBA object to send sub-scan infor-
mation to it.

Most of the information needed by the DataCapture is sent by the Control subsystem at the beginning of a sub-
scna. At the end of the subscan, Correlator provides status information about the subscan via a CORBA function
call which include:

• Whether or not there were any flags for integrations or sub-integrations
• The total number of un-blanked integrations executed
• The number of sub-integrations per integration.

The format of this main table data is one row for all integrations and one row for all sub-integrations in the sub-
scan.

Data Publisher

+assembleIntegrations()
+createHeader()
+getAtmoCorrSpectra()

-subArray
-startTime
-duration
-polnProduct
-binNumber

Data Publisher::DataWriter

1

+connectToArchive()
+sendSpectraToArchive()
+monitorConnection()

-connectionStatus : bool
Data Publisher::Publisher

1

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 43� of 86�

3.8.4.1 Scaling Factors

The final spectral results must be scaled for efficient storage in the archive as specified in SSR 2.3-R5. A scaling
factor is computed based on bandwidth of a spectral window and integration duration which is used to determine
if the spectral results can fit into a 16- or 32-bit signed integer. This scale factor accompanies the data results and
is specific to each integration, although it may be the same for many integrations. Only cross correlation data will
be scaled integers while auto-correlations will always be floating point values. A detailed procedure for determin-
ing scale factors can be found in ‘Data Scaling’ of [16]. Note that channel average data is not scaled as it is a sin-
gle floating-point value.

3.9 Data Flow Robustness
Data flow through the CDP processing software must be resistant to failures. If hardware or software errors pre-
vent spectral results to arrive at the archive, the software must notify the operator via alarms and continue to run
in a degraded state.
Data flow through the CDP processing software must be resistant to failures. If hardware or software errors pre-
vent spectral results to arrive at the archive, the software must notify the operator via alarms and continue to run
in a degraded state or to fail gracefully.
3.9.1 Detail Data Flow
The correlator data flows as a synchronous pipeline with timed waits at many steps of this pipeline as shown in
the following diagram.

Figure 21

Each box represents a data producer and/or consumer with the correlator software components in the gray boxes.
The arrows which connect boxes show direction of the data and those which run below the boxes are timed waits,
where a given thread waits on a timed semaphore for data to arrive. The last arrow between the CDP Master and
the BDD is a simple data publish.
The Lag Processor (LP) waits on correlator dumps. LP delivers its data to the Spectral Processor (SP) which con-
verts the lags to raw spectra (or channel averages). The CDP Node publishes these raw spectra to the CDP Master
which in turn assembles all the integrations into an ASDM binary blob which is then published to the BDD.
The first three components are part of the CDP Node and that there are multiple CDP Nodes all sending their data
to a single CDP Master.
During R5.1, we have encountered problems with the BulkData transmission between multiple senders in differ-
ent computers and multiple receivers in the same computer. These are different streams but have caused imple-
mentation problems. I wanted to drop the BulkData system and replace it with a simple TCP/IP socket implemen-
tation for this internal communication, but CIPT management required that we continue to use the BulkData
mechanism.
If any delay occurs in this pipeline an alarm is raised denoting data failure.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 44� of 86�

3.9.1.1 Data Flow Failure Handling

The important receiver is the CDP Master and here is where the data flow failures are handled. The CDP Master
receives CDP Node data blocks for each baseline, polarization product, bin, APC, etc. and knows when to expect
each data block and how many blocks to receive for each integration. If data delivery failure occurs anywhere in
the pipeline, a timeout will be sensed by the CDP Master. In general, the CDP Master expects to receive all of the
data blocks shortly after each integration boundary beginning with the subscan start time. A data block is consid-
ered 'missing' if it doesn't arrive in this time frame.
Once a data block is missed, an alarm is triggered with appropriate information to identify which block is missed.
The following exception algorithm is executed:

numberOfTries = 0

do

 wait for data block within an integration interval

 if missing data block arrives

 add missing data block to received_data_block_list

 break

while(numberOfTries < MAX_RETRY_COUNT)

if missing_data_block no received in MAX_RETRY_COUNT

 set flag error indicating cause of failure

 add dummy data block to received_data_block_list

publish_data_to_BDD()

A dummy data block for now will hold all 0's, but there is no special significance of the values. The dummy data
block is added to keep the binary attachment size at the expected size for the integration.
The concept of flagging exists in the ASDM binary code in general, but specific flags have not been defined but
will be worked on in R6.
3.9.2 Alarms
In general, alarms are separated into 4 categories:

• Data corrupted
• Data might be corrupted
• Data may be suspect
• System offline

In order to avoid an 'alarm overload' situation where there could be a cascade of alarms repeatedly occurring
throughout a subscan, 4 alarms with optional information describing the source of the alarm have been defined.
Using these alarms with textual source information, one could look into the logs to find the source of the problem.
The 4 alarms are:

• CDP Master fails to receive data from a CDP node
Here the CDP Master will have information regarding the expected data including channel average or
spectral data, the antennas, array, baseband, etc. This will guide the debugger to find the correct CDP
Node and source of the alarm.

• CDP Master fails to send data to the Bulk Data Distributor

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 45� of 86�

Here the CDP Master can add additional information regarding the type of data, channel average or spec-
tral, the BDD flow number, array id, etc. and when in the subscan, i.e., at the beginning of the subscan,
for an integration or sub-integration, or at the end of the subscan.

• CDP Master fails to send end-of-subscan information to the DataCapturer
Although this only happens in one spot, it is very important in the data flow as it finalizes the ASDM for
a subscan. The DC name and array will be the extra information. Also, bind/release DC function calls can
generate this alarm.

• CDP Node or Master computer hardware problem
An example of this failure would be a temperature over-limit value. This would be tied to a BACI property.

3.10 Physical Architecture
Figure 22 shows a block diagram of the correlator computer hardware and interconnections for the full 64-
antenna correlator.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 46� of 86�

Backup CDP Master

Correlator Control
Computer (CCC)

oRack-mounted 4U
chassis

oDual CPU Opteron
o66 MHz PCI Bus
o33 MHz PCI Bus
oTEWS 901 CAN
oGigabit Ethernet
oRTAI
oDiskless
o1 GB RAM

Corr. Quadrant
1

LTA, Station
Controllers, &

Quadrant
Controlers

~3
2

C
A

N
 n

od
es

pe

r Q
ua

dr
an

t

Ethernet

CAN
Busses

(9)

Data Processing Computer
(CDP)

Each compute node:
o Rack-mounted 4U chassis
o Dual CPU Opteron
o 66 MHz PCI Bus
o 33 MHz PCI Bus
o 25 MHz 32-bit data port

(HPDI32A-PCI64)
o Gigabit Ethernet
o RTAI
o Diskless 4 GB RAM

Science & Monitor
Data Archive

Array Control
Computer (ACC)

Ethernet

CDP Master Node
o Ethernet to

Archive
o Dual CPU
o RTAI
o 4 GB RAM

Corr. Quadrant
2

LTA, Station
Controllers, &

Quadrant
Controlers

Corr. Quadrant
3

LTA, Station
Controllers, &

Quadrant
Controlers

Corr. Quadrant
4

LTA, Station
Controllers, &

Quadrant
Controlers

ALMA Correlator
Computer Systems

2005-05-02

48 ms
TE

64 Antennas

...

Telescope Calibration

Quick Look Pipeline

48 ms TE bus
Private CDP network
CCC/Corr. CAN bus
ALMA control/monitor network
ALMA CDP-Archive network

32
-b

it
da

ta
 p

or
t

32
-b

it
da

ta
 p

or
t

32
-b

it
da

ta
 p

or
t

32
-b

it
da

ta
 p

or
t

Backup CCC

Figure 22 Correlator Computer Layout

The correlator control computer is a dual Opteron CPU rack mounted PC running RedHat Linux and RTAI. Cur-
rent versions run the CPU at ~2 GHz, but in general we will purchase the fastest CPUs available. Due to the alti-
tude, all computers will be diskless. For file systems which hold kernel logging and temporary run-time data, e.g.,

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 47� of 86�

/tmp and /var,either a RAM disk or a tuned NFS and kernel configuration can be used. This will assist in de-
bugging serious software failures. We will be evaluating this behavior in the R6 interval.

3.10.1 Correlator Control Computer
The CCC connects to the correlator hardware via 9 CAN busses using two Tews TPMC901 CAN
(www.tews.com). The CCC accesses the array-wide timing events via its parallel port. The CCC also has an
RS-232 serial interface to the correlator for low-level bootstrapping functionality. The CCC interfaces to the ex-
ternal computer systems via Ethernet.

3.10.2 Correlator Data Processor
The correlator data processor computer (CDP) is a cluster of dual Opteron CPU rack mounted PCs. The com-
puters connected to the correlator hardware via 32-bit data ports are ‘compute nodes’ and connect to a ‘master
node’ which acts as a bridge between the internal cluster network and the external telescope network.

The correlator hardware distributes the array-wide TEs to the CDP compute and master nodes via their parallel
ports.

Each compute node essentially performs the same function of extracting raw lags from the correlator hardware
and converting them to spectral data blocks. There is no sharing of lags among compute nodes and all the lags for
a given baseline end up in one compute node. An exception to this is when the quantization correction is made –
the channel 0 lags of the auto-correlation are necessary to compute the correction. This is a single value which
should not impose a huge burden on inter-node communication.

3.10.3 Network Infrastructure
There are 3 networks associated with the correlator computers:

• CAN – a deterministic serial protocol used to control and monitor the correlator hardware
• Gigabit Ethernet – used within the CDP cluster for communication between the master and slave

nodes.
• Gigabit Ethernet – used to interface the CCC and CDP to external computer systems on the ALMA

AOS network which includes the ARTM and ABM computers and the ALMA OSF network which
includes the ACC, Archive, Telescope Calibration, and Quick-Look pipeline.

The present plan has a 10Gbit fiber link from the AOS to the OSF to support correlator spectral data and a sepa-
rate 10Gbit fiber link for monitor data and remote disk access.

3.10.4 Correlator Hardware
While complete descriptions of the correlator hardware can be found at [22], [23], and [24], a brief overview is
provided here.

3.10.4.1 Basebands

Each quadrant is connected to a “baseband pair”. Each fiber of the pair carries digitized samples at 4 giga-
samples/sec of 3-bits for a given intermediate frequency in ‘0’ and ‘1’ linear polarizations with a 2 GHz band-
width. Depending on the correlator configuration, 1, 2 or 4 of the polarization products are used in calculating the
cross-correlation function. Each antenna and baseband can be individually configured for all parameters, e.g.,
bandwidth, polarization products, dump durations, etc., although this is not normally done.

The Tunable Filter Board provides 8192 lag channels distributed among sub-filters with varying resolutions. The
sub-filters can be tuned to any frequency within the 2 GHz band and multiple filters of different resolutions can
be placed anywhere in the 2 GHz band. The TFB has 2-bit and 4-bit capabilities for added sensitivity. Each cor-
relator chip handles 4 x 4 matrix of antenna inputs (CAIs) with a “correlator card” holding 64 chips (for 32 x 32

http://www.tews.com/�

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 48� of 86�

CAIs) and a “correlator plane” holding 4 correlator cards (for 64 x 64 CAIs). There are 32 planes to a quadrant
and the entire correlator consists of 4 quadrants.

Auto- and cross-correlation products are accumulated in the LTA in units of 16 milliseconds (or 1 millisecond for
special auto-correlation-only modes) which then dumps the raw lags via the DPI to the CDP for processing. The
correlator hardware is synchronized with other array devices via the timing event bus. For the TFB the 16 milli-
second dump duration could extend to a maximum of 512 milliseconds as the number of antennas increases in an
array – for details on this point, see section 9.1.

3.10.4.2 Correlator Chip Accumulation

Correlator chip accumulation duration is measured in 1 millisecond for auto-correlations or 16 millisecond units
for cross-correlations. This is specified as the correlator accumulation mode (CAM). Although 1 millisecond ac-
cumulations can be programmed (for autocorrelations only), they are dumped at most every 16 milliseconds, with
16 1- millisecond accumulations.

For the TFB, the minimum dump duration is 512 milliseconds for the 8192 channels for an array containing more
than 5 antennas. The TFB has a ‘by-pass’ mode which provides a low resolution of 256 channels and short dump
periods of 16 milliseconds.

3.10.4.3 Bin switching

The LTA has up to 4 separate ‘bins’ or memory accumulation registers into which separate correlator chip accu-
mulations can be added. The sequence of switching among bins can be programmed on 16ms boundaries. Bin
switching can be utilized for phase or other types of ‘antenna’ switching or it can be used for sideband separation.
This is in addition to separate binning provided by the CDP.

3.10.5 Physical Computer Racks
Due to the propensity of earthquakes at the AOS site, an idea of the physical computer rack layout is needed for
structural engineering analysis.

There will be at least four racks at least 48 RUs in height.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 49� of 86�

Figure 23 Correlator Computer Rack Layout

The following spreadsheet provides estimates of height and weight information.

Rack # CDP Master CDP Node DPIs
RS-485

Interface CCC DMC Monitor UPS
Power
Switch

Height
Us

Height
Inches

Rack
Height

Contents
Weight (kg)

1 2 4 4 1 1 2 1 38 66.5 40 405
2 4 4 1 2 1 2 1 38 66.5 40 405
3 4 4 1 1 1 2 1 36 63 40 379
4 4 4 1 1 1 1 29 50.75 40 296

Totals 2 16 16 4 2 1 4 7 4 1485
Height in Us 3 3 2 2 3 4 2 3 2 40
Weight kg 26 26 4.5 4.5 26 26 4.5 57 23 85

Table 3 Correlator Computer Rack Heights and Weights

These racks will be attached to the ends of the correlator racks and sit on a reinforced framework to comply with
zone 4 earthquake standards. Also, the racks will be 48 U high to accommodate any extra computers.

3.11 Computer Cooling
Cooling in the correlator room at the AOS technical building uses forced air through a raised floor with an ex-
pected ambient temperature of 15°- 20°C. Air duct openings will be located in front of each computer rack which
does not have front or rear doors. Each computer chassis draws in cool air via 2 9cm fans with 2 6cm exhaust fans
drawing warm air out of the rear of the chassis. At this time, CPU fans are attached to large heat sinks to provide

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 50� of 86�

better cooling of the CPUs. The possibility of using ‘low-power’ CPUs which do not require a CPU fan, but only
a heat sink is currently under investigation.

3.12 Dynamic Model
The operational flow of commands and data to and from CCC and CDP has been previously discussed. Here we
attempt to evaluate the real-time constraints on these systems.

3.12.1 CCC Timing Discussion
The main timing constraint, i.e., hard deadline, for the CCC is the 48 ms TE. Most CCC time critical processes
are synchronized to the TE:

• Start observing command. This command instructs the correlator hardware to begin correlating with a
given configuration on a specific TE.

• Distributing the geometric delay to the station cards at a specific TE. Assuming all 64 antennas re-
quire delay updates with one update every ~3.5 TEs (one update every ~172 ms) and assuming the
CAN bus can transmit 2.4KB/TE with 256 bytes of delay data for all 64 antennas, then ~3% of the
CAN bandwidth is required.

• Besides distributing the geometric delays to the correlator hardware, the CCC must not miss geomet-
ric delay events published on the delay notification channel. This can be avoided with the model
server transmitting delay values in blocks in advance. Although it is the intention to provide shorter
setup times, lead times of 5 to 60 seconds would ensure that network latency problems would be
avoided. Prototype testing will allow better definitions of these lead values.

• The TE Handler package cannot miss a TE. A semaphore with a timeout of 50 milliseconds is used. If
the TE is missed the timeout call-back function is called and recovery routines are executed to re-
establish array time.

• Lead time of 1.5 seconds for configuration of the correlator hardware. This restriction is linked to a
fast switching interval requirement of 1.5 seconds (see sections 3.1.6.3.1.1 – 3.1.6.3.1.1 of [25]).This
is shown schematically in Figure 24.

Figure 24 Sub-scan Configuration Timing Diagram

• Configuration for the CDP must be transmitted from the CCC with enough lead time to configure the
CDP by a given TE. This is discussed in further detail in section 3.12.1.

In light of this timing information, Table 4 describes the beginnings of a rate monotonic analysis (RMA) done for
the CCC. A simple procedure of RMA as described in [26] is followed where Utilization = (execution time / pe-
riod) * 100%, i.e., the percentage of CPU time taken by a task. As long as the cumulative utilization does not ex-
ceed 100%, all tasks can be scheduled. Note that RTOS overhead is not accounted for which is usually a few per-
cent of total CPU time. Each task is listed in decreasing priority order. Benchmarking was done a 1 GHz Pentium
III CPU for all timing tests.

Timing Events ...

Configure subscan cmd
tagged to start at t = m sent
here ~2 secs in advance

Start Time, Hardware Action Performed
Here at Specified Time tag. End of
previous subscan period with old
correlator configuration

CCC commands LTA
start subscan

Configure subscan cmd
from ACC processed here

ti tm-32 tm-31 tm-2 tm-1 tm tm+1tm-20 tm-3tm-21

...

tm-22

CCC sends configure
subscan cmd to LTA
~1.5 secs in advance

...

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 51� of 86�

Task Purpose Execution
Time (Ci) ms

Period
(Ti) ms

Utilization
%

Cumulative
Utilization

1. Array Time Process 48ms TE 0.5 48 1.0 1.0
2. Start Sub-
Scan

Send start subscan cmd.
to LTA & CDP

10 1500 0.7 1.7

3. Send delay Distribute delay to SCC 10 48 20.8 22.5
4. Receive de-
lays

Receive delay values
from event channel

500 10000 5.0 27.5

5. Configure
Sub-scan

Receive & schedule sub-
scan configuration

100 1500 6.7 34.2

6. Monitor Monitor corr. hw. & CCC 10 10000 0.1 34.3

Table 4 CCC Rate Monotonic Analysis

All execution times are currently estimates. As development progress continues, actual execution times based on
prototypes can be developed to better define this analysis.

3.12.2 CDP Compute Node Timing
For the compute nodes in the CDP, the important deadlines are the receiving of raw lags from the 32-bit data port
and processing the previous set of raw lags before the subsequent set arrives. Specific time-critical events include:

• Transfer raw lags from 32-bit data port to a memory buffer via DMA. Every 16ms the LTA can
transmit 1024 sets of 256 4-byte lags (1 MB). 1 MB/16ms = 64MB/sec per CDP Node.

• Process 1024 sets of 256 raw lags into spectra each 32 ms. This processing is twice the dump duration
as we are using a double buffering scheme discussed in section 3.12.2. Note that this data set size is
an example. There are many size lag sets which affect processing times linearly. This processing in-
cludes these steps:
• Non-DMA transfers and copies of lag sets involved with lag processing
• Antenna blanking including overhead of real-time event channel
• Sideband separation binning and calculations
• Lag normalization, windowing, quantization correction and FFT. Tests show that on a 1.0 GHz

Athlon this takes approximately ~250 milliseconds for 1024 256-point data sets (256 complex
spectral channels). Assuming 2.4 GHz and a linear increase in processing, this value becomes
~120 ms.

• Fine geometric delay adjustment
• Channel Averaging on 500 ms period
• Transmit spectra to master node for an integration on 500 ms period. Note that this is depends

strongly on the integration duration which can often extend to 10 seconds
• Array time cannot miss a tick. A short, period task is triggered each 48ms with a watchdog timer to

expire if the tick is missed. The watchdog timer can execute recovery routines to re-establish array
time. If a timing tick is missed, the CDP must log an error and blank its data until it can resynchronize
itself to array time.

• Start observing command on a specific TE
• Configure data processing parameters for a sub-scan with a lead time of 1.5 seconds

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 52� of 86�

The 32-bit data port interface on the correlator actually transfers the 1 MB at an effective burst rate of
125MB/sec. The PC’s 32-bit data port card can buffer 128K of 4-byte words which is 1/4 of the total data for the
16ms period. The PC’s 32-bit data port card then DMA-transfers from the 32-bit data port FIFO buffer to the
PC’s main memory.

Figure 25 shows the timing details of the 32-bit data port transfer from the correlator hardware to the PC’s RAM
and lag processing. Note that the DMA transfer is not sequential, but interspersed between the 32-bit data port
transfers to the PC’s 32-bit data port FIFO. The steps are:

Each 16ms the correlator hardware dumps 1024 x 256 x 4 bytes (1 MB) to the 32-bit data port card in the com-
pute node PC. This takes 8 ms since the transfer is effectively 125 MB/sec.

The PC’s 32-bit data port card has a 128K x 4-byte FIFO buffer to store intermediate results. When this buffer
fills up, a DMA transfer occurs between the 32-bit data port FIFO buffer and the PC’s RAM. It takes 4ms for a 66
MHz PCI bus for the 1 MB of data.

28 ms remain to process the lags of the previous dump.

This is a pipeline process where processing occurs on a previous dump.

In Table 5, the DMA transfer (task #2) is shown as CPU utilization. Although this is not completely correct, the
CPU is effectively idle as no memory accesses can occur while the DMA controller is mastering the bus.

Figure 25 32-bit data port timing diagram

Task Purpose Execution
Time (Ci) ms

Period (Ti)
ms

Utilization
%

Cumulative
Utilization

1. Array Time Process 48ms TE 0.500 48 1.0 1.0
2. Transfer Lags DMA transfer of raw

lags from FPDP to RAM
8.0 32 25.0 26.0

3. Sum Lags Lag processing 1.555 28 5.6 31.6
4. Antenna Blanking Discard invalid lag sets 3.159 28 11.3 42.9

5. Quantization Cor-
rection

 2-bit 4-level VanVleck 18.665 28 66.7 108.6

6. Smoothing Apply windowing func-
tion

3.669 28 13.1 121.7

DPI Transfer NN

32ms Dump Cycle using double buffering

2

124 168

1

0 20 424 28 32/0 8 12124 168 20 24 28 32/0 16 20 24 28 32/0 4 8 12 16 20 24 28 32

3 4

Available time to
process lags

from DPI xfer 2

Available time to
process lags

from DPI xfer 3

4321

Available time to
process lags

from DPI xfer 1

N PC DPI DMA to PC RAM of Lag Transfer N

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 53� of 86�

Task Purpose Execution

Time (Ci) ms
Period (Ti)

ms
Utilization

%
Cumulative
Utilization

7. FFT FFTW 11.333 28 40.5 162.1

8. Spectral Averaging Time average spectra 2.150 28 7.7 169.8

9. Channel Average Perform channel aver-
aging

8.500 500 1.7 171.5

10. Transmit Spectra Transmit spectral
blocks to master

0.195 1000 10.0 181.5

Table 5 CDP Compute Node Rate Monotonic Analysis

For the TFB, we must add in the extra processing and the multiple FFTs – one for each up to 32 sub-bands. At
this point, we do not have sufficient timing analysis, but it will undoubtedly take more processing time than
shown in Table 5.

Obviously, these CPUs are over-scheduled. There are some issues that need addressing:

• These examples are based on calculations of simulated data for 2 antennas with 256 lags scaled to 32
antennas running on a 1 GHz Pentium III.

• Quad CPU boards are available. This would extend the available processing time to 64 ms by utiliz-
ing 4 buffers to which DMA could transfer – see section 3.12.5 for the double buffering discussion.
This would further divide these numbers by roughly a factor of 2. Current technology allows for dual
core CPUs to directly replace the single core CPUs in our existing nodes which we can then use for
further timing tests. We now utilize quad-CPU boards with 2 dual-core CPUs.

• The use of specialized DSP processors is another possibility. This has not been addressed and most
likely will not be done in the future.

• The Transmit Spectra task assumes that 1 Gigabit Ethernet is used, i.e., ~50 MB/sec see [27] with
~50% CPU utilization. The percent utilization is determined as such:
• Amount of data to send every second: 10 MB which represents 10 100 ms integrations
• Time to send out 1 second of data: 10 MB/(50 MB/sec) = 200 ms.
• From [Error! Bookmark not defined.], using a CPU utilization of 50%, the total CPU time

used is: 200 ms * 0.5 = 100 ms. Thus every 1000 ms the CPU is utilized for 100 ms – Utilization
= 100 ms/1000 ms = 10%

• A backup plan could be to create a ‘network of compute nodes’ to handle the loads. In this sce-
nario, one primary compute node would connect to the 32-bit data port and have 2 or more sec-
ondary compute nodes connected to it. The primary compute node distributes lags to the secon-
dary compute nodes for processing. This solution lowers the computation load, but may increase
bandwidth loads and definitely increases system complexity. To this end, I have specified taller
racks which would allow for extra computers. Also the correlator floor is being fitted with an ex-
tra four rack subframes which can accommodate many more computers in case this is needed.

• gcc compiler options produced an improvement of ~10 - 30%.
• Other questions which need to be evaluated

• How much overhead exists in master-slave communication?

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 54� of 86�

During R5, performance tests were done on a quad-Opteron CPU. The tests used 8K lags and included all proc-
essing steps except for residual delay correction and atmospheric phase corrections. Preliminary results look
good.

Number
Antennas

Processing time
in milliseconds

2 0.15139162

4 0.60194354

8 2.40402212

10 3.70195242
12 5.04011172
16 8.35184091
20 13.1476833
32 33.1499615

Table 6: CDP Node processing times

32 antennas are a complete test as this is the total number of antennas handled by one CDP node. By using multi-
ple CPUs, we can easily meet the timing specifications.

3.12.3 CDP Master Node Timing
The main function of the master compute node is a router. It sends commands from external computers to the
compute nodes and routes data to the archive.

The time-critical processes include:

• Array time cannot miss a TE tick. A short, period task is triggered each 48ms with a watchdog timer
to expire if the tick is missed. The watchdog timer can execute recovery routines to re-establish array
time. This is the only hard, real-time task.

• Route configuration and control commands from the CCC to the appropriate compute nodes.
• Receive (from the compute nodes) and assemble all integrations for all baselines lines in a given ar-

ray.
• Transmit the spectral data integrations plus channel average data sub-integrations for all arrays to the

BDD at 60 MB/sec

Task Purpose Execution
Time (Ci)
ms

Period
(Ti) ms

Utilization % Cumulative
Utilization

1. Array Time Process 48ms TE 0.5 48 1.0 1.0
2. Route CCC
cmds

Route config. & control
cmds. from CCC

2 48 4.2 5.2

3. Spectral data
collection

Collect spectral integra-
tions from compute
nodes

100 10000 1.0 6.2

4. Build XML Build XML data for an 1550 10000 15.5 21.7

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 55� of 86�

Task Purpose Execution

Time (Ci)
ms

Period
(Ti) ms

Utilization % Cumulative
Utilization

data set array & integration
5. Transmit
Spectra

Transmit spectral data
blocks to BDD

250 10000 2.5 24.2

6. Transmit
Channel Aver

Transmit channel aver-
age data blocks to BDD

100 500 20.0 44.2

7. Monitor Monitor CDP master
node

10 10000 0.1 44.3

8. Administer
cluster

General cluster admini-
stration

1000 6.00E+0
5

0.2 44.5

Table 7 CDP Master Node Rate Monotonic Analysis

Building the binary data is the most expensive task. These execution times are derived from tests and may require
revision. In R6, we will be able to evaluate the timings for large data sets.

As a backup plan, there can be multiple master nodes in a hierarchical arrangement. A primary master node can
handle configurations from the CCC and there can be multiple node bridges between the internal CDP network
and the external network. This plan increases the software complexity, but may be necessary to handle the data
loads. These issues will be investigated during development and testing phases.

In the R6 development cycle, we will be testing end-to-end throughput from the correlator hardware to the ar-
chive in Charlottesville. This will provide definitive timing results for the CDP Master to Archive data transfers.
Note that these performance tests will also include CDP node processing tests.

3.12.4 Computational Load Resolution
To provide a clear path as to how I intend to approach a solution of the computational load on the CDP, I will
investigate the following:

• Compiler optimizations specific to the CPU we’re using.
• BIOS/RTOS optimizations to eliminate unnecessary hardware interrupts, e.g., power management

and USB support
• Dual-core CPUs resulting in 4 CPUs.
• ‘Divided computer architecture’ where multiple computers process data in parallel.

In R2, we have looked into the first two items which provided minor, on the order of a few percent, improve-
ments. In R3, the first item provided an improvement of ~30% in floating point operations. The second item was
mostly done as part of RTAI kernel configurations. For R4, the CDP node dual-core CPUs were purchased in or-
der to run in a quad-CPU environment. During R5, we will determine if these quad-CPU systems are sufficient in
combination with 64-bit Linux which better exploits the underlying 64-bit architecture of the Opteron and moth-
erboard. Some reports indicate a factor of 1.5 – 2 speed improvement under 64-bit Linux. We did not complete a
64-bit version of real-time Linux during R5, so this test was not done. But as noted above, I believe that we can
meet the processing requirements in 32-bit Linux. Nevertheless, moving to a 64-bit implementation should con-
tine to be investigated.

For R6, we will continue with processing tests and further itemize the exact durations for each processing step.

During the R7.0/7.1 cycle (Nov. 2009) completed tests will be performed itemizing the durations for each step
with real hardware, interrupts, etc. with a single CDP Node. A cluster scalability test utilizing 8 CDP nodes is
scheduled for April 2010.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 56� of 86�

3.12.5 CDP Processing Pipeline
Figure 26 shows the data processing pipeline in the CDP compute nodes. There are three important aspects of the
data processing pipeline: 1) the use of double buffering, 2) the use of real-time tasks for the various processing
stages and the inter-process communication mechanisms between tasks, and, 2) the concept of arrays, that is, sub-
sets of antennas which work together as independent units.

By having two memory buffers to which the DMA transfers can write, we can extend the time available to the
CPU to process data results. The amount of available time essentially doubles by having one buffer per data pipe-
line per CPU.

Although the processing pipeline can be performed by a large monolithic task, it is broken up into stages by func-
tionality – DMA transfer of raw lags to shared memory, raw lag processing, spectral processing, and data deliv-
ery. The first three are closely synchronized where one task does not start until it signaled to use the output from
the previous stage. The final stage, data publishing, is asynchronous because the data receiver in the CDP master
node may not consume bursts of data as fast as the CDP nodes publish it due to network latency and master node
load. Therefore the data publisher task queues up blocks of spectral integrations (or channel average sub-
integrations) and delivers them when it can, decoupling the synchronous processing tasks from the slower data
publishing task.

Figure 26 – CDP Processing Pipeline

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 57� of 86�

3.13 System Reliability
Here we attempt to identify reliability issues with the Correlator subsystem computers and software. Currently
there are no technical requirements specified nevertheless, this is an important issue which needs addressing.

3.13.1 Single-Point Failures
It is crucial to identify single points of failure in the Correlator subsystem. Single points of failure are computers
which, if they fail, stop the flow of all data from the correlator. There are two computers which fall into this cate-
gory – the CCC and the CDP master node.

3.13.1.1 Correlator Control Computer

There will be two CCCs - a primary and secondary computer. Each will be connected to the ALMA AOS net-
work, the correlator CAN bus, and a remote power switch. Only the primary computer will be powered and run-
ning its application software. If there is a fault with this computer, the operators can reboot the primary CCC by
cycling power via a remote power switch.

If the primary computer does not correctly restart, the operators will then power-down the primary CCC and then
power up the secondary CCC. When it powers up it will load the same application software and become the pri-
mary computer. If a scheduling block was being executed, then it will have to be restarted or discarded as the op-
erator sees fit. The failed CCC can then be removed and repaired by technicians at a convenient time. The ex-
pected downtime in this situation is ~15 minutes.

3.13.1.2 Correlator Data Processor Computer

The CDP master node will have an identical redundant computer as in the case of the CCC. For the CDP compute
nodes, a single node failure only affects 1/16 of the correlator output, i.e., other nodes continue to produce data so
the Correlator subsystem operates in a degraded mode. Because of this and because we can have only one com-
puter connected to each correlator’s DPI interfaces, we do not have plan to have redundant CDP compute nodes.

3.13.2 Sources of Failure
As the CCC and CDP nodes are identical computers, we treat them identically. There are several areas of poten-
tial hardware failure with the CDP nodes.

• Cooling – The computers have high-performance AMD CPUs which run very hot. The computer en-
closures will have many fans (with filters) and the CPUs also have a cooling fan. The correlator com-
puters will share the temperature-controlled environment of the correlator hardware which should
prevent overheating as long as all of the fans are functioning. These fans are the most susceptible
components to failure and can be monitored in real time. CPU and enclosure temperatures can be
tracked to assist in scheduling maintenance.

• Note that low-power Opteron CPUs are now available which run at much cooler temperatures. This
type of CPU should be used to minimize the overheating risk.

• Networking – Cabling and routers used by the correlator computers are hardware-replaceable items
which should involve a down time of about an hour.

• Software Failures – Failures due to software fall into 3 levels of severity:
• Low – These are warnings for which software errors have been identified in the code and are

programmatically handled. These warnings are logged and software execution continues unin-
terrupted.

• Medium – These are software errors which allow for execution to continue, but if enough occur,
then software failure can ensue. An example of this is dynamic memory consumption increases

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 58� of 86�

until there is no available memory for the application to successfully execute. These errors may
or may not be logged.

• Severe – These are software errors which cause one or more major software modules to cease
execution. Examples of these are null or invalid pointer references, dynamic memory exhaustion,
stack overflows, etc. Often these errors are not logged before execution halts and the fact that the
system has failed may be difficult to determine.

Once software execution fails, the CCC must be rebooted which can take several minutes to come up. Subsequent
re-configurations of the CCC and correlator hardware will take more time. We plan to have remotely controlled
power strips for remote reboots.

Spare computers and I/O boards will be available for cold-swapping broken CDP Node computers. Replacement
of computers or boards should be straight-forward with modular I/O connectors facilitating the cable connections.
Replacements should take approximately 1 hour. Failed computers can then be repaired at the OSF.

3.13.3 High altitude disk server
During commissioning one may expect that the fiber connection between the AOS and OSF could fail at which
point operations would be halted. It is possible to create a disk server at the AOS technical building from which
all of the diskless computers in Correlator and Control could utilize as boot servers in this situation. This high-
altitude server would contain hard disks rated at 5000 meters. In 2007, these 73 GB disks cost about $500US and
5-10 drives would be required to serve all of the diskless computers.

3.13.4 Error Handling
This section discusses the various scenarios of software failures and how they are handled. Each recovery scenar-
ios must be dealt individually due to how different parts of the correlator software interfaces with others both in-
ternally and externally.

3.13.4.1 External interfaces to the CDP Master

The CDP Master has two external subsystem clients, the bulk data distributor and the Data Capturer component.
Recall that for each integration and sub-integration sent to the bulk data distributor, corresponding meta data is
sent to the Data Capturer (actually an array of structures with one element for each integration or sub-integration
for the entire sub-scan). If the CDP Master fails to send data to the bulk data distributor, a CORBA exception is
thrown which the CDP Master catches and flags that block of data as bad in the corresponding Data Capturer
structure. Thus post-processing software can determine that there is missing binary data.

If the Data Capturer component has failed at the end of a subscan, it finalizes its bdf blob with an abortObserva-
tion element and sends to DC (sendSubScanCorrelatorData) meta-data including only the number of completed
integrations and bytes in the blob. That is, at this level of interaction CORR has provided to DC all available
meta-data at the moment the error has occurred. This also means that the operation of the correlator sub-system
cannot affect the collection of data beyond a sub-scan boundary. On the other hand, CONTROL will know of the
aborted/stopped sub-scan by means of a callback mechanism which should be ready to use by September 23th
2009.

The CDP Master also publishes and subscribes to events on notification channels. As stated earlier, if antenna
blanking or delay event data are not received in a timely fashion, then spectral data for the affected integrations
are blanked with blanking flags set accordingly along with the spectral data. At this time, there is no way to know
if the notification channel on which integration events are published fails. An external agent should monitor the
CORBA notification service for failures and restart any notification channels as needed. Of course this may not
be transparent requiring some reinitializations, but at this time, I’m not sure how to handle this.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 59� of 86�

3.13.4.2 External interfaces to the CCC

The CCC software only receives data and CORBA function calls from external subsystems. The CCC subscribes
to notification channels whose failures were previously discussed.

3.13.4.3 Internal interfaces between CCC and CDP Master

The CCC invokes methods on the CDP Master to start and stop subscans. If the CCC fails invoking these meth-
ods, then it should throw an exception. The Correlator Master component should then recognize that the CDP
Master has failed and will require restarting. Currently the restarting technique will require all components to shut
down and restart placing all of the correlator software in its initial ready state.

3.13.4.4 Internal interfaces between CDP Master and CDP nodes

3.13.5 MTBF
Exact mean time between failures numbers are difficult to determine as complete analysis requires MTBF for all
components. [28] discusses the MTBF for the CCC and CDP systems. In summary, the MTBFs for the correlator
computers are:

• CDP compute node cluster: approximately 1.2 years
• CDP master node: approximately 19.3 years
• CCC : approximately 13.3 years

This means that the CDP cluster will have approximately one failure per year.

3.14 System Startup
The Correlator subsystem must start in a predefined fashion. As the Correlator subsystem is a device of the Con-
trol subsystem, startup of the Correlator is controlled by the Control subsystem and similar to other devices.
While details of the start up sequence are in the Control subsystem design document, an outline is provided here.

Control’s MasterComponent is responsible for starting the correlator software. The MasterComponent starts the
Correlator’s components – these are the ACS LifeCycle methods. Most of the components of the Correlator will
derive from ControllerComponent as defined by the Control subsystem design thus inheriting the Compo-
nentLifecycle interface, an ErrorAnalyzer class, and contain one or more resources.

Once the software components are operational, the MasterComponent instructs the Correlator (via the Controller
interface) to start its hardware dependent startup sequence. This is a two-pass system which allows for explicit
execution of hardware dependent software, e.g., RTAI kernel modules, CAN node notification and verification of
hardware, etc. In the second pass, CORBA notification channel connections.

Some external subsystems must be already started while other subsystems will wait on the Correlator subsystem
for services. The sequence diagram in Figure 27 shows the startup procedure.

A bootserver computer (currently gns) must be running first to provide remote disks for the correlator computers
to booting from and NFS-mount their file systems. The ARTM must also be operational in order to synchronize
the CCC and CDP computers to Array Time. Once the computers have their time set, they subscribe to the vari-
ous data notification channels. Lastly, the CDP creates the data streaming channels to the BDD and the integra-
tion event notification channel.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 60� of 86�

ACC CCC CDP Master Node CDP Compute NodeARTM

getTimeSourceRefObject()

synchronizeTime

isTimeSynchronized

synchronizeTime

isTimeSynchronized

synchronizeTime

isTimeSynchronized

Repeated
until time

synchronized

remoteBootAndMountFileSystems()

remoteBootAndMountFileSystems()

remoteBootAndMountFileSystems()

There are 16
compute nodes

waitForGeometricDelayChannel()

waitForCCCGeometricDelayChannel

waitForAntennaBlankingChannel()

FDS

waitForCorrelatorDataChannels()

Executive

waitForIntegrationEventChannel

waitForWVRDataChannel

LifeCycle::initialize()/execute()

LifeCycle::initialize()/execute()

LifeCycle::initialize()/execute()

Load RTAI
kernel

modules

Figure 27 – Correlator startup sequence

3.14.1 UPS Monitoring
Each rack of computers (there will be 4 racks each with 4-7 computers each) will have a uninterrupted power
supply providing power line filtering against voltage ‘glitches’ and short-term battery backup (approximately 5
minutes). The correlator computers will share the same power of the correlator, so if the power fails for the corre-
lator, it also fails for the computers. There is no battery backup for the entire correlator – only minimal monitor-
ing cards are battery-backed up, so once the power fails, there is no need to run the correlator computers until the
power returns. But the computers should shutdown gracefully and inform external subsystems of the impending
shutdown. No hardware will be damaged if this shutdown sequence does execute completely.

The sequence diagram in Figure 28 shows the series of events in the UPS shutdown process. Each UPS will have
a serial connection to a single computer in the rack (the ‘main rack computer’) to which it sends a signal notifying
that the power has failed.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 61� of 86�

The main rack computer issues a standard Linux shutdown command on each slave rack computer. Each slave
rack computer notifies the Control system’s master component that it is shutting down due to a power failure and
then executes a shutdown script which unloads all of the ACS containers in an orderly fashion. The main rack
computer then notifies Control’s master component that it is shutting down and then executes a shutdown script.

It is the responsibility of the operator to power on the computer rack (via a remote Ethernet power switch) once
the power is restored to the correlator.

UPS Hardware MainRackComputer SlaveRackComputer

PowerOutage

ShutDown

shutDownScript

Control Master Comp.

ShuttingDownMsg

ShuttingDownMsg

shutDownScript

Figure 28 UPS shutdown sequence diagram

3.15 Telescope and Monitor Configuration Database
The TMCDB provides much information defining hardware configuration parameters needed by the correlator
software at a given point in time. These items do not change frequently, but when they do, the Correlator subsys-
tem will be notified to reload the TMCDB using the Maintenance interface previously discussed. These items
include:

• Mapping of antenna inputs to CAIs
• Mapping of baseband pairs to correlator quadrants.
• LO offsetting parameters for each antenna
• A software description of the correlator software monitor properties
• Version and type of correlator hardware
• Number and type of CAN nodes and LRUs (Line Replaceable Units) in the correlator hardware
• Computer hardware descriptions
• Antenna/Baseband fixed delay offsets
• Walsh function switching sequences for each antennas

4 Correlator Simulator

The purpose of the correlator simulator is to provide a test bed for the CCC and CDP software without relying on
the correlator hardware. The correlator simulator presents software interfaces to the CCC and CDP components
simulating the behavior of the correlator. What cannot be simulated is the speed of the correlator.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 62� of 86�

Figure 29 Hardware view of correlator, CCC, and CDP

Figure 30 Simulator View

Each box in bold represents a separate computer (or piece of hardware in the case of the correlator) with software
components identified within. The differences between Figure 29and Figure 30 are:

• In Figure 29, we see that
• the CCC and CDP have special hardware interface drivers
• there are physical connections between the CCC, CDP and correlator
• configuration flows from the CCC to the CDP via an external (Ethernet) connection

• In Figure 30,
• the hardware interface drivers are replaced by software interfaces
• all software components including the correlator simulator reside on a single computer with inter-

process communication (IPC) connections replacing the physical connections
From the viewpoint of the CCC and CDP software, we see that the CCC pushes CAN commands to the correlator
via a real-time FIFO (TxFIFO) interface and accepts response from the correlator via a separate real-time FIFO
(RxFIFO). The CDP receives raw data from the correlator via a shared memory buffer. Here we see that the in-
terfaces are abstracted and allow for the correlator simulator to ‘plug in’ an adapter which simulates the data for
these interfaces.

The correlator simulator accepts CAN commands through the TxFIFO and returns appropriate responses via the
RxFIFO. In turn, it writes raw data to a shared memory buffer which is read by the CDP software and processes
the raw data (called ‘lags’) into raw spectra (as a result of a start subscan command).

The simulator requires the use of RTAI and that CIPT Management at CDR6 agreed that a non-RTOS mode of
simulation is not required.

4.1 Correlator Simulator Software Components
Here we define the major packages that are necessary for the correlator simulator

Correlator
Hardware

CDP
SW

HPDI
driver

CCC
SW

CAN
Driver

CAN
I/F

FIFOs

Shared
Mem
Buffer

CCC to CDP configuration

Correlator
Simulator CDP

SW

Shared
Mem
Buffer

CCC
SW

CAN
I/F

FIFOs

CCC to CDP configuration

HPDI
Sim.

CAN
Sim.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 63� of 86�

4.1.1 CAN Commands
This package is responsible for accepting CAN commands, interpreting them, and returning ‘meaningful’ re-
sponses. A meaningful response is one which provides an expected value within a reasonable period of time.
What cannot be expected is to perform this functionality on the same time basis as the physical CAN interface.

4.1.2 Lag Data
This package responds to a ‘start subscan command and begins delivering simulated raw lag data to the CDP via
its shared memory interface. The format and duration of the data must correspond to the configuration received
via a CAN command.

4.1.3 Configuration Tool
As there are many phases of the correlator throughout the lifetime of the ALMA construction phase, the simulator
needs to adapt to these changes. This allows for the correlator software to be tested against a specific version of
the correlator hardware. For example, the prototype correlator is a two-antenna system with limited functionality
and commands. Also the CAN command protocols are specific to the prototype correlator and are different (or
non-existent) in the final correlator. The final correlator will be built in stages – it would be beneficial to deter-
mine the how these different configurations affect the correlator software.

4.2 ALMA Observatory Simulator
In R3, an end-to-end observatory simulator was developed. This shared simulator produces raw lag data inde-
pendently of the existing correlator simulator. The shared simulator generates lags taking into account other
hardware simulators, e.g., antenna position and focus parameters, geometric delays, etc. These lag sets are used
by the correlator simulator which then routes them to the CDP as described above.

5 Correlator GUI

5.1 Correlator configuration and spectral viewing
A graphical user interface (CorrGUI) has been developed for engineering tests and has matured to become a
valuable component in testing the correlator software and will be used during ALMA commissioning.This al-
lowed us to integrate it into the Executive's subsystem Operator Master Client (OMC) application as part of the
GUI function based team. A user manual can be found on the Twiki [29] which provides a detailed view of its
functionality.

CorrGUI allows a user to configure the correlator hardware and software and collect and view the spectral results.
It utilizes the software interface that the Control subsystem uses for configuration and taps into the data path be-
tween the CDPNode and CDPMaster software components for the spectral results. As development of the corre-
lator software progresses, we add functionality to take advantage of the new features.

In the coming year, we will work more on incorporating it into the OMC and to implement a 'view-only' option
which allows the user to view spectra and monitor properties, but not to configure the correlator.

5.2 Correlator monitoring and diagnostics

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 64� of 86�

6 Correlator Monitoring GUI

This section discusses the correlator monitoring GUI. This GUI will be manifold and include the following capa-
bilities:

• Provide a high-level view of the “correlator” status. This status includes correlator hardware and correla-
tor computer hardware

• The ability to quickly identify that the status of correlator hardware either as fully functional, partially
functional, or fully failed

• The ability to “drill down” to the LRU (Line-Replaceable Unit) level to determine the specific LRU
which is faulty

• The ability to view specific monitor data for a given LRU

• Provide a common monitoring GUI for both the ACA and ALMA-B correlators.

• Provide an interface to run hardware diagnostic tests on the correlator.

6.1.1 Error Diagnostic
The diagram in Figure 31 presents the hierarchical view of the correlator. There are 5 levels applicable to the
ALMA-B correlator, (there are fewer levels for the ACA correlator). The user is initially presented with level 1, a
block labeled “ALMA-B Correlator”. If its color is green, then all is okay. If not, then the user clicks this box to
begin the drill-down search to find the failed LRU. The user successively clicks on blocks until s/he reaches the
failed LRU guided by the color codes of each block. In Figure 31, we see that the failed LRU is Quadrant 1, Sta-
tion Rack 1, Bin 1, Card 1 by following the non-green color sequence from yellow to orange to red. Finally, we
see that the monitor point PS2 is over-voltage causing the failure.

6.1.2 Monitor Point Viewing
We can also identify specific monitor points to view. The user drills down to any LRU. Once the monitor points
are displayed for a given LRU, s/he may select any monitor point widgets and drag them to a special panel which
allows a real-time display of monitor data similar to what is shown if Figure 32.

6.1.3 Diagnostic Testing
The ALMA-B correlator has many low-level tests developed by the correlator engineers to validate internal corre-
lator signal paths. It is envisioned that during idle, non-observation times, these tests can be initiated with the re-
sults checked at one or more points along these signal paths. These tests would be started by specific interfaces to
the CCC which in turn, would send specific CAN commands to the various control microprocessors in the corre-
lator.

Figure 33 shows diagrammatically how data would flow for a given test from each set of cards for a quadrant.
The data would flow between cards, bins and racks with results being checked at appropriate points. The interme-
diate and final results would be available to the CCC allowing indication of any malfunctioning hardware.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 65� of 86�

Figure 31 Correlator Monitoring Heirachical View

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 66� of 86�

Figure 32: Correlator Monitoring View

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 67� of 86�

Figure 33: Correlator Diagnostic View

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 68� of 86�

7 References

1 Real Time Application Interface, http://mail.aero.polimi.it/~rtai/.

2 Lucas, R. et al. ALMA Science Software Requirements and Use Cases, ALMA Computing Memo 11, 2001-
May-03, http://www.mma.nrao.edu/ development/computing/docs/joint/0011/ssranduc.pdf

3 Pisano, J., Hale, A., Scott, S., ALMA Correlator Software Granular Requirements, Vers. 1.4 (2005),
http://almasw.hq.eso.org/almasw/bin/view/SSR/SoftwareSubsystemsDetailedRequirements .

4 Glendenning, B., Operations Requirements and Specification on the Computing IPT COMP-70.00.00.00-
005-A-SPE Version: A

5 Chiozzi, G., Gustafson, B., Jeram, B., ALMA Common Software, http://www.eso.org/~gchiozzi/AlmaAcs/

6 The Ace ORB, http://www.cs.wustl.edu/~schmidt/TAO.html

7 Napier, P. ALMA Use of LO Offsetting for Spurious Signal Suppression and Sideband Rejection, SYSE-
80.04.00.00-018-A-DSN, 2007.

8 Broadwell, C.M., Pisano, J. A., Interface Control Document From Correlator to Computing Correlator
Software, ALMA-60.00.00.00.00-70.40.00.00-A-ICD (2004).

9 D'Addario, L., Notes on Delay Tracking for ALMA Resolution & Tolerance, 2003-Feb-08

10 Broadwell, C. M., Long Term Accumulator CAN Protocol,
http://www.mma.nrao.edu/development/correlator/lta/LTACCC_IPD.pdf (2002).

11 Brooks, M., D’Addario, L., ALMA Monitor and Control Bus Interface Specification, ALMA-SW-0007,
(2001).

12 Broadwell, C., The Long Term Accumulator Subsystem Manual, CORL-60.02.03.00-002-A-MAN, (2003).

13 Pokorny, M., Pisano, J., Science Data Model Binary Data Format, Ver. 1.0 (2008).

14 Viallefond, F., ALMA Science Data Model, http://aramis.obspm.fr/~alma/AEDF/ver2.0/allhtm/, (2005).

15 Comoretto, G., Algorithms and formulae for hybrid correlator data correction, (2004).

16 Scott, S. SSR Specifications and Clarifications of ALMA Correlator Details,
http://almasw.hq.eso.org/almasw/pub/CORR/CorrelatorDocuments/AlmaCorrel.pdf, (2003).

17 Thompson, A.R., et. al., Interferometery and Synthesis in Radio Astronomy, Krieger, (1998).

18 Schwab, F. Van Vleck Correction for the GBT Correlator, (Draft, 2002).

19 The Fastest Fourier Transform in the West, http://www.fftw.org

20 AMD Core Math Library (AMCL), ver. 2.5.0,
http://www.developwithamd.com/apppartnerprog/acml/docs/acml_userguide.pdf (2004).

21 Bulk Data Transfer Discussion, http://almasw.hq.eso.org/almasw/bin/view/ACS/BulkDataTransfer .

22 Escoffier, R. The ALMA Correlator Block Diagram,
http://www.mma.nrao.edu/development/correlator/BLOCK.pdf

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 69� of 86�

23 Escoffier, R., Broadwell, C., The ALMA Correlator Long Term Accumulator, ALMA Memo No. 294 (2000).

24 Quertier, B., et. al, Enhancing the Baseline ALMA Correlator Performances with the Second Generaion
Correlator Digital Filter System, ALMA Memo 476 (2003).

25 Baars, J. ed. ALMA Construction Project Book, Ver. 5.50,
http://www.mma.nrao.edu/projectbk/construction/ (2002).

26 Briand, L.P., Roy, D.M., Meeting Deadlines in Hard Real-Time Systems – The Rate Monotonic Approach,
IEEE Computer Society, (1999).

27 Hasegaw, Y,. et. al., DAQ/EF-1 Event Builder system on Linux/Gigabit Ethernet,
http://rd13doc.cern.ch/Atlas/Notes/147/Note147-8.html (2000).

28 Zivick, J. ALMA Computing Reliability Analysis Final Report, SYSE-80.11.00.00-005-B-REP (2005).

29 Pisano, J. Correlator GUI Manual, http://almasw.hq.eso.org/almasw/bin/view/CORR/CorrGuiManual

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 70� of 86�

8 System Interfaces

This section discusses all external interfaces provide by and used by the Correlator subsystem.

8.1 Package – Interface Relationship
This section shows the relationship of interfaces, data streams and events defined in the Correlator IDL files to
packages which have been defined in this document. As the following table shows, many interface functions are
divided among many packages.

Interface Item Packages
alma.Correlator.ObservationControl ACS CCC Interface

CCC Command Dispatcher
Array Management
CAN I/F
CCC_CDP_IF
CDP Configuration
TE Scheduler

alma.Correlator.CCC_Monitor CCC Monitor
ACS CCC Interface
CAN I/F

alma.Correlator.CDP_Monitor CDP Monitor
alma.Correlator.ObservationQuery CCC Monitor
alma.Correlator.Maintenance.Diagnostic
alma.Correlator.Maintenance.Quadrature
alma.Correlator.Maintenance.CorrCanMgr

CCC Maintenance
CAN I/F
CCC Command Dispatch
TE Scheduler

alma.Correlator.ConfigurationValidator Corr. Config Validation
alma.Correlator.ArrayTime Array Time Interface (CCC & CDP)
PublishIntegrationEvent Master Data Publisher
WVRValueEvents CDP Node

WVR Correction
AntennaBlankingEvents CDP Node

Lag Processing
GeometricDelayModelEvents CDP Node

Residual Delay
Spectral Processing
ACS CCC Interface
Geometric Delay
CAN/IF

Correlator Data Stream HPDI32
Lag Processing
Spectral Processing
Atmospheric Phase Correction
sideband separation
Node Data Publisher

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 71� of 86�

Interface Item Packages
Channel Average Stream Lag Processing

Data Processing
Data Publisher

Monitor Stream ACS CDP Interface
CCC Monitor
CDP Node
Node CDP Monitor
Master CDP Monitor

Table 8 Interface-Package cross reference

9 Appendices

9.1 Minimum Integration Duration
Determining the minimum integration duration for visibilities has many constraints. I outline the technical con-
straints and then conclude with request that the SSR provide specific scientific use cases to set a minimum inte-
gration duration. Note that while the technical details are well-understood, the scientific use cases need further
input.

Determining the minimum integration duration for the ALMA-B correlator is not straightforward due to the par-
allel processing of groups of CAIs. The correlator hardware is divided into 4 sets of 32x32 CAIs (called a 'corre-
lator card') with each correlator card's output going to a single CDP node. Thus, the data that flows to each CDP
node from a correlator card is an independent pipeline so the minimum data rate is specified by the number of
CAIs in use for a given correlator card.

For this reason, the table below,Table 9 , shows the minimum dump time for 1 – 32 CAIs and 256 – 8192 lags.
The maximum data rate for a correlator card is:

32 x 32 x 256 lags every 16 ms or 32 x 32 x 256 = 262,144 lags

For a data rate of 262,144/0.016 secs = 16.384 x 10^6 lags/second.

Due to the parallel nature of the 4 correlator cards, the minimum dump duration for 33 – 64 CAIs is identical to
the first 32 for a given resolution.

The user can play some games by knowing which antennas are connected to which CAIs and consequently which
correlator cards to squeeze out more antennas at a lower dump duration. This is discouraged as the mapping of
antennas to CAIs is a run-time issue and would require specific planning. But if one tries to do this, then s/he can
get up to 16 times the number of antennas processed for a given dump duration.

Each correlator card is physically connected to a CDP node computer, so we can also view the correlator cards as
CDP nodes. If the antennas are connected to the CAIs such that for an array of dimension N the maximum num-
ber of antennas associated to one single CDP node is f(N) = n then 'n' is the number of antennas listed in column
1 of Table 9. If the arrays follow in general a certain pattern then the properties of the function f() could be opti-
mized by cleverly connecting the correlator inputs.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 72� of 86�

The best scenario happens when f(N)=N/4. In this case the user could see a minimum dump duration improved
by a factor of 16, at most (not always, though). The worst scenario happens when f(N)=min{N,32}, this scenario
is shown by inspecting Table 1. These considerations bound what the user will actually see as a minimum dump
duration in real life.

Note also that for configurations prepared off-line, without access to information about the current assignment of
correlator inputs, it is possible that at the moment of actually executing the sub-scan, the integration time be-
comes to be impossible to attain! Thus, we provide the table, but planning (if possible at all) for an optimum f()
function should be kept in mind.

The correlator cards are divided into 4 simple grids:

9.1.1.1 Archive Limitations

Andreas Wicenec, notes that there currently are technical limitations on the frequency of data transmission to the
archive. In the following Wiki page: http://websqa.hq.eso.org/almasw/bin/view//Archive/CreateFiles, and from
private communications with Andreas, the archive team is working on tuning the archive system to achieve an
average minimum time to write a file is ~100 milliseconds.

There is some possibility to group together multiple short integrations within the CDP Master computer over a
longer interval to meet this technical specification, but this would require a substantial amount of coding effort.

Also, there currently is a maximum data rate into the archive of 60 MB/sec which places an overall limitation on
data rates.

9.1.1.2 Sideband separation

Sideband separation using 90° phase switching via Walsh function sequences require that a correlator dump must
complete a full sequence of Walsh switching states. The length of this sequence depends on the number of anten-
nas in an array. For the ACA correlator with 16 antennas, the minimum duration to complete a full Walsh func-
tion sequence is 512 ms or 32 16-ms states . The ALMA-B correlator with 64 antennas requires a minimum dura-

Card 3 Card 2

Card 1 Card 0

6

6

3

3

3

3 0

0

http://websqa.hq.eso.org/almasw/bin/view//Archive/CreateFiles�

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 73� of 86�

tion of 2.048 seconds or 128 16-ms states. Note that there has been discussions of dumping out one half of the
sequence independently of the second half in order to obtain 1 second sub-integrations. Also for the ALMA-B
correlator, this imposes the use of TDM or 256-lag FDM modes only. See Walsh Function Definition for ALMA,
D. Emerson, ALMA Memo 565, 2006, for more details.

9.1.1.3 Science Requirements

Of course, the major driver for these minimum times are scientific. We believe that we need some solid use cases
from the SSR to justify the work to overcome the technical hurdles outlined in this note. These use cases should
include the following information:

• Number of antennas in an array
• Minimum integration duration
• Spectral resolution
• Sub-scan and scan durations which define the overall duration of these high data rates.
• Auto-correlations only versus visibility data.
• OTF imaging, pulsar gating, and ALMA VLBI

At this time, (CDR6), I have not pursued these specifications with the Science IPT, but will do so during R6.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 74� of 86�

256 512 1,024 2,048 4096 8,192

Ants
1 256 0. 016 512 0. 016 1, 024 0. 016 2, 048 0. 016 4, 096 0. 016 8, 192 0. 016
2 1, 024 0. 016 2, 048 0. 016 4, 096 0. 016 8, 192 0. 016 16, 384 0. 016 32, 768 0. 016
3 2, 304 0. 016 4, 608 0. 016 9, 216 0. 016 18, 432 0. 016 36, 864 0. 016 73, 728 0. 016
4 4, 096 0. 016 8, 192 0. 016 16, 384 0. 016 32, 768 0. 016 65, 536 0. 016 131, 072 0. 016
5 6, 400 0. 016 12, 800 0. 016 25, 600 0. 016 51, 200 0. 016 102, 400 0. 016 204, 800 0. 016
6 9, 216 0. 016 18, 432 0. 016 36, 864 0. 016 73, 728 0. 016 147, 456 0. 016 294, 912 0. 032
7 12, 544 0. 016 25, 088 0. 016 50, 176 0. 016 100, 352 0. 016 200, 704 0. 016 401, 408 0. 032
8 16, 384 0. 016 32, 768 0. 016 65, 536 0. 016 131, 072 0. 016 262, 144 0. 016 524, 288 0. 048
9 20, 736 0. 016 41, 472 0. 016 82, 944 0. 016 165, 888 0. 016 331, 776 0. 032 663, 552 0. 048

10 25, 600 0. 016 51, 200 0. 016 102, 400 0. 016 204, 800 0. 016 409, 600 0. 032 819, 200 0. 064
11 30, 976 0. 016 61, 952 0. 016 123, 904 0. 016 247, 808 0. 016 495, 616 0. 032 991, 232 0. 064
12 36, 864 0. 016 73, 728 0. 016 147, 456 0. 016 294, 912 0. 032 589, 824 0. 048 1, 179, 648 0. 080
13 43, 264 0. 016 86, 528 0. 016 173, 056 0. 016 346, 112 0. 032 692, 224 0. 048 1, 384, 448 0. 096
14 50, 176 0. 016 100, 352 0. 016 200, 704 0. 016 401, 408 0. 032 802, 816 0. 064 1, 605, 632 0. 112
15 57, 600 0. 016 115, 200 0. 016 230, 400 0. 016 460, 800 0. 032 921, 600 0. 064 1, 843, 200 0. 128
16 65, 536 0. 016 131, 072 0. 016 262, 144 0. 016 524, 288 0. 048 1, 048, 576 0. 080 2, 097, 152 0. 144
17 73, 984 0. 016 147, 968 0. 016 295, 936 0. 032 591, 872 0. 048 1, 183, 744 0. 080 2, 367, 488 0. 160
18 82, 944 0. 016 165, 888 0. 016 331, 776 0. 032 663, 552 0. 048 1, 327, 104 0. 096 2, 654, 208 0. 176
19 92, 416 0. 016 184, 832 0. 016 369, 664 0. 032 739, 328 0. 048 1, 478, 656 0. 096 2, 957, 312 0. 192
20 102, 400 0. 016 204, 800 0. 016 409, 600 0. 032 819, 200 0. 064 1, 638, 400 0. 112 3, 276, 800 0. 208
21 112, 896 0. 016 225, 792 0. 016 451, 584 0. 032 903, 168 0. 064 1, 806, 336 0. 112 3, 612, 672 0. 224
22 123, 904 0. 016 247, 808 0. 016 495, 616 0. 032 991, 232 0. 064 1, 982, 464 0. 128 3, 964, 928 0. 256
23 135, 424 0. 016 270, 848 0. 032 541, 696 0. 048 1, 083, 392 0. 080 2, 166, 784 0. 144 4, 333, 568 0. 272
24 147, 456 0. 016 294, 912 0. 032 589, 824 0. 048 1, 179, 648 0. 080 2, 359, 296 0. 160 4, 718, 592 0. 304
25 160, 000 0. 016 320, 000 0. 032 640, 000 0. 048 1, 280, 000 0. 080 2, 560, 000 0. 160 5, 120, 000 0. 320
26 173, 056 0. 016 346, 112 0. 032 692, 224 0. 048 1, 384, 448 0. 096 2, 768, 896 0. 176 5, 537, 792 0. 352
27 186, 624 0. 016 373, 248 0. 032 746, 496 0. 048 1, 492, 992 0. 096 2, 985, 984 0. 192 5, 971, 968 0. 368
28 200, 704 0. 016 401, 408 0. 032 802, 816 0. 064 1, 605, 632 0. 112 3, 211, 264 0. 208 6, 422, 528 0. 400
29 215, 296 0. 016 430, 592 0. 032 861, 184 0. 064 1, 722, 368 0. 112 3, 444, 736 0. 224 6, 889, 472 0. 432
30 230, 400 0. 016 460, 800 0. 032 921, 600 0. 064 1, 843, 200 0. 128 3, 686, 400 0. 240 7, 372, 800 0. 464
31 246, 016 0. 016 492, 032 0. 032 984, 064 0. 064 1, 968, 128 0. 128 3, 936, 256 0. 256 7, 872, 512 0. 496
32 262, 144 0. 016 524, 288 0. 032 1, 048, 576 0. 080 2, 097, 152 0. 144 4, 194, 304 0. 272 8, 388, 608 0. 528

Cross
Min

Dump
Time

(secs)

Cross
Min

Dump
Time

(secs)

Cross
Min

Dump
Time

(secs)

Cross
Min

Dump
Time

(secs)

Cross
Min

Dump
Time

(secs)

Cross
Min

Dump
Time

(secs)

Table 9 Minimum Integration Durations

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 75� of 86�

9.2 Equations
Equations used in this design are summarized here.

9.2.1 Vs Subtraction
For each lag value the following correction is performed to remove the correlator chip multiplication bias:

()
lag k

lag k dumpIntegrationCounts
lag

()
()

(
=

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟0

where dumpIntegrationCounts is a value dependent on internal ALMA-B correlator hardware aspects.

9.2.2 Lag Normalization
See ‘Spectral Normalization’ [16] for details.

9.2.3 Geometric Delays
The geometric delays are discussed in section 3.8.3.8.

9.2.4 Atmospheric Phase Correction
See section 3.8.3.9.

9.2.5 Digitization Correction
See [18] for details.

9.2.6 Windowing Functions

Bartlett:

w k

k
n

 k
n

n k
n

n
k n

()

()
,

()
,

+ = −
≤ ≤ −

− −
−

≤ ≤ −

⎧

⎨
⎪⎪

⎩
⎪
⎪

1

2
1

0
2

1

2 1
1 2

1

Blackman:
w k

k
n

k
n

k n() . . cos . cos ()+ = −
−

⎛
⎝⎜

⎞
⎠⎟ +

−
⎛
⎝⎜

⎞
⎠⎟ ≤ ≤ −1 0 42 05 2

1
0 08 4

1
0 1π π

Blackman-Harris:

w k
k

n
k

n
k

n
k n() cos cos cos ()+ = −

−
⎛
⎝⎜

⎞
⎠⎟ +

−
⎛
⎝⎜

⎞
⎠⎟ −

−
⎛
⎝⎜

⎞
⎠⎟ ≤ ≤ −1 2

1
4

1
6

1
0 10.34875 0.48829 0.48829 0.01168π π π

Hamming: w k
k

n
k n() . . cos ()+ = −

−
⎛
⎝⎜

⎞
⎠⎟ ≤ ≤ −1 054 0 46 2

1
0 1π

Hann (Hanning):
w k

k
n

k n() . cos ()+ = −
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≤ ≤ −1 05 1 2
1

0 1π

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 76� of 86�

Welch:
w k

k
n

n k n() ()= −
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

≤ ≤ −1 2

2

0 1

2

9.2.7 Discrete Fourier Transforms
See [19] for details.

9.2.8 Channel Averaging
See ‘Channel Average’ in [16].

9.2.9 Sideband Separation
See section 3.7.15.

9.3 Correlator Hardware CAN Commands
Here we list the currently available commands which the CCC can use. The source for these commands comes
from sections 8 – 11 in [10].

9.3.1 Common CAN Commands
The following commands are common to all correlator cards directly on the CAMB bus:

Command Name Description
Node Identification Re-
quest

Request node ID

Block Transfer to Abso-
lute Memory Address

Send data to absolute target memory address

Set 48ms Tick Count Set a specific TE to a given value
Bootstrap Operations Download new microprocessor code & reboot
Erase Flash Sectors Erase microprocessor flash memory
Program Data Flash Program microprocessor data flash sector(s)
Program Code Flash Program microprocessor code flash sector(s)
Block Read back from
Absolute Memory

Read data from absolute target memory address

Read CAN Debug or
History Queue

Read CAN debug data or CAN history data

Read Status Blocks Read TBD status blocks
Set/Get 48ms Tick Count M&C set or get 48 ms tick count
Get Data Flash Status Get status information regarding flash memory erase & pro-

gram operations
Get Bootstrap Status Get status of bootstrap operations
Get Checksum Status Get microprocessor code checksum status
Get Code Checksum Get microprocessor code checksum
Get Code Flash Status Get microprocessor code flash status
Get Data Checksums Get microprocessor data checksums
Set/Get CAN History
Queue Number of En-

Set/Get size of CAN history queue

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 77� of 86�

Command Name Description
tries
Command CAN Debug
Capture

Begin capture of CAN commands for debugging

Table 10 - Common CCC CAN Commands

9.3.2 LTA Specific CAN Commands
Command Name Description
Download Configuration
Parameters

Send correlator configuration data

Download All Swap
Control Bytes

Parameters used by LTA to reduce the number of errors in
data transmittal between correlator and station interface cards.

Download Phased array
parameters

Configure phased array mode

Generate New State Command embedded CPU to generate new FPGA control
words for a correlator configuration

Apply New State Apply new correlator configuration at the next TE
Set Blanking Duration Set the duration of the blanking interval that occurs once every

msec in the correlator chips for multiple LTAs.
Setup Correlator Card
Tests

Run microprocessor tests

CI Test Ctrl Set parameters that control “cable training” tests.
Read CAN Debug or
History Queue

Read CAN debug data or CAN history data

Read Status Blocks Read TBD status blocks
Read Correlator Card
Lags

Read raw lags

Read Cable Training Er-
ror Counts

Get error count in “cable training” tests

Read Cable Training
Alive Status

Get the “alive” status of each bit stream in cables interfacing
correlator and station interface cards.

Set/Get My Accumula-
tion Planes

M&C Specifies which 8 correlator planes for an LTA micro-
processor

Set/Get My Control
Planes

M&C Specifies a pair of correlator planes for an LTA micro-
processor

Set/Get Blanking Dura-
tion

Set/get the duration of the blanking interval that occurs once
every msec in the correlator chips for one LTA.

Get CPLD2 Status Mask indicating which target cards are in the correlator bin.
Get FPGA Init Status Mask indicating which target cards succeeded in the INIT

phase of an FPGA download.
Get FPGA Done Status Mask indicating which target cards succeeded in the data

transfer phase of an FPGA download.
Get FPGA Flash Stor-
age Status

Mask indicating which FPGA in flash is valid.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 78� of 86�

Command Name Description
Get State Status Low Status resulting from the GENERATE NEW STATE and AP-

PLY NEW STATE commands described above. This monitor
covers STATE numbers 0 – 7.

Get State Status High Status resulting from the GENERATE NEW STATE and AP-
PLY NEW STATE commands described above. This monitor
covers STATE numbers 8 – 15.

Set/Get Test Accumula-
tion Number of Ticks

Set/Get number of 16 ms ticks used for test accumulations

Get List of Cards Pre-
sent

Get list of correlator and interface cards present

Get Cable Training Test
Iterations

Get iteration count in “cable training” tests.

Table 11 – LTA CAN Commands

9.3.3 SCC-Specific CAN Commands
Command Name Description
Download All Fractional
Phases

Download the fractional phase setting for every data stream
between the station interface cards and the correlator interface
cards.

Download BBC Set BBC for 4 CAIs
Apply BBC Apply the downloaded BBC at the next TE
Download TFB Tap
Weights

Set the TFB tap weights

Select PN Data Select pseudo number generators for in the station interface
cards, station cards, or TFB cards as the source of output data.

Set All Fractional
Phases

Set all the fractional phase control bit fields to the specified set-
tings.

Set Filter Card Input Select the source of input data for either a single TFB card in a
bin or for all eight TFB cards in a bin.

Download Delay Model Set quantized delay model parameters
Read Digitizer Statistics Read digitizer statistic measurements in TFB cards. Each TFB

card measures the duty cycle of a given input and output state
each msec

Get List of Cards Pre-
sent

Get list of station, TFB, and interface cards present in bin

Set/Get My Antennas Specifies the lowest numbered antenna (out of 4 possible)
handled by this SCC.

Get CPLD2 Status Return status of target cards in station bin
Get FPGA Init Status Get status of FPGAs and initialization
Get FPGA Done Status Get status of FPGAs after download
Get FPGA Flash Storage
Status

Mask indicating which FPGA personalities were found to be
stored with a proper SYNC word in flash memory. We assume
a valid personality is present if the SYNC word is correct.

Set One Fractional Set a single fractional transmission phase control bit field to the

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 79� of 86�

Command Name Description
Phase specified setting.

Table 12 - SCC CAN Commands

9.3.4 QCC-Specific CAN Commands
Command Name Description
Read Warn Counts Request the warning counts for each type of warning
Get Rack On Get rack on/off status
Read Monitor Data
Blocks

Request all monitor points for a specified card type

Table 13 -QCC CAN Command
9.4 Correlator Configuration
The correlator configuration is part of the ALMA Project Data Model defined in UML. It contains the correlator
configuration which generates an IDL file that is used by various subsystems to configure the correlator. This is
the current IDL structure follows.

/* @(#) $Id: CorrConfig.idl,v 1.9 2008/11/25 16:03:19 ramestic Exp $
*/

#include <acstime.idl>
#include <almaEnumerations_IF.idl>

#pragma prefix "alma"

/** This IDL file defines all the parameters for correlator configuration. It
 ** is a hierarchical structure of containers:
 ** 1. Correlator configuraiton:
 ** 2. 1 - 4 Baseband configurations
 ** 3. 1 - 8 Spectral window configurations
 **
 ** A note about sidebands.
 ** There are 3 types of receivers:
 ** Band Type
 ** 1,2 SSB w/ USB & LSB
 ** 3 - 8 2 sidebands, with either sideband suppression removing either USB
 ** or LSB or sideband separation which routes the USB to one baseband
 ** pair & the LSB to another baseband pair.
 ** 9,10 Double sidebands, with 90d phase switching to do sideband separation
 ** or no separation & the 2 sidebands are overlaid.
 **
 ** The relevant parameters to define this are:
 ** NetSideBand defines if the spectral window is USB or LSB
 ** SideBandSeparationMode defines 90d phase switching or sideband rejection
 ** ReceiverSideband defines which type of receiver is in use: SSB, 2SB or DSB
 **
 ** The order of frequency channels are implied that for the USB, the lowest sky
 ** frequency is mapped to the lowest IF (or baseband) frequency and for the LSB,
 ** the lowest sky frequency is mapped to the highest IF frequency, i.e., the
 ** channel order is 'reversed'.
 **
 ** A note about frequencies.
 ** The correlator knows only about baseband frequency. All frequencies in this IDL
 ** are baseband frequencies, i.e., 2 - 4 GHz.
 */

module Correlator

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 80� of 86�

{
 /// Sequence of stokes parameters to define single, dual, or full polarization
 typedef sequence <StokesParameterMod::StokesParameter> StokesParameterSeq;
 /// Sequence of APC to allow: (CORRECTED &/or UNCORRECTED) or MIXED
 typedef sequence <AtmPhaseCorrectionMod::AtmPhaseCorrection> AtmPhaseCorrectionSeq;

 /** The maximum number of spectral windows per baseband.
 ** For the BLC there can only be 4 independent spectral windows per baseband.
 ** We allow for 8 because there can be 4 pairs of spectral windows with DSB receivers.
 */
 const short MAXIMUM_NUMBER_SPECTRAL_WINDOWS = 64;

 /// The maximum number of channel average regions per spectral window
 const short MAXIMUM_NUMBER_CHANNEL_AVERAGE_REGIONS = 10;

 /// The maximum number of basebands supported in a configuration
 const short MAXIMUM_NUMBER_BASEBANDS = 4;

 /** Nutator or frequency switching definition. This structure defines the
 ** type of switching, the number of switching positions, the dwell time,
 ** i.e., the time in a given position and the 'dead time', i.e., the time
 ** that the data should be ignored due to mechanical delays, e.g., moving time
 ** and settling time. Some caveats:
 ** -# Frequency switching usually has no dead time.
 ** -# dwellTime + deadTime must be multiple of 48ms
 ** -# The size of the dwellTime & deadTime sequences must equal numberOfPositions.
 ** -# If SwitchingType == NO_SWITICHING, then numberOfPositions = 0.
 ** -# Frequency switching is per baseband while nutator switching applies to all
 ** basebands.
 */
 struct BinSwitching_t
 {
 /// NO_SWITCHING | LOAD_SWITCHING | POSITION_SWITCHING | PHASE_SWITCHING |
 /// FREQUENCY_SWITCHING | NUTATOR_SWITCHING | CHOPPER_WHEEL
 SwitchingModeMod::SwitchingMode SwitchingType;
 /// 2 | 3 | 4
 long numberOfPositions;
 /// The duration at a given position
 ACS::TimeIntervalSeq dwellTime;
 /// The duration of data to ignore for each position
 ACS::TimeIntervalSeq deadTime;
 };

 /** This structure defines the phase switching configuration 180 degrees
 ** which is performed in the ACA correlator.
 */
 struct ACAPhaseSwitchingConfigurations
 {
 /** If doD180modulation = TRUE then '180-degree anti-demodulation' is
 ** performed in the DTS receiver, else no '180-degree anti-demodulation'
 ** is performed.
 ** The '180-degree anti-demodulation' cancels the 180 degrees demodulation
 ** in the DTS transmitter to detect potential spurious signals mixed at the
 ** digitizer. The '180 degrees anti-demodulation' is also used to reduce the
 ** bias generated in the FFT calculation.
 */
 boolean doD180modulation;

 /** If doD180demodulation = TRUE then '180-degree demodulation' is
 ** performed in the CIP module, else, no '180-degree demodulation'
 ** is performed.
 ** The '180-degree demodulation' cancels the '180 degrees anti-demodulation'
 ** in the DTS receiver if doD180modulation = TRUE. Or the '180-degree
 ** demodulation' cancels the 180 degrees modulation performed in the LO, if
 ** neither the 180 degrees demodulation in the DTS transmitter nor '180-

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 81� of 86�

 ** degree anti-demodulation' in the DTS receiver are performed.
 ** The doD180demodulation must be TRUE when doD180modulation = TRUE,
 ** because '180-degree anti-demodulation' must be canceled if the '180-
 ** degree anti-demodulation' is performed.
 */
 boolean doD180demodulation;

 /** The minimum duration of an element of the 180-degree modulation.
 ** This value is also used for the 180-degree demodulation.
 ** d180Duration must be 250us, 500us, 1ms, 2ms, 4ms or 8ms, and this value
 ** must be the same as the minimum 180 degree phase switching duration
 ** both in the LO and the DTS transmitter. So this value must be coordinated
 ** with CONTROL.
 */
 ACS::TimeInterval d180Duration;
 };

 /** \struct Defines a region for channel average data. Note that these
 ** parameters are based on effective channels. That is, startChannel
 ** must be a zero based index within the effective range of spectral
 ** channels and the number of channels is interpreted based on the
 ** spectral resolution (band-width per channel) before any spectral
 ** averaging (spectralAveragingFactor) has been applied.
 */
 struct ChannelAverageRegion
 {
 long startChannel; ///< the first channel of this channel average region,
 long numberChannels; ///< the number of channels to average together
 };
 typedef sequence<ChannelAverageRegion,MAXIMUM_NUMBER_CHANNEL_AVERAGE_REGIONS> ChannelAverageRegion-
Seq;

 /** \struct Defines a spectral window for the Tunable filter.
 */
 struct SpectralWindow
 {
 /** The center frequency of each spectral window in MHz relative to the
 ** baseband, i.e., 2 - 4 GHz. The step size of the band is 2 GHz/8192
 ** = 244.141 KHz.
 */
 double centerFrequencyMHz;

 /** the effective bandwidth of each spectral window in MHz
 */
 double effectiveBandwidthMHz;

 /** the effective number of channels of the spectral window.
 */
 long effectiveNumberOfChannels;

 /** Specify the number of spectral channels to average together for
 ** each spectral window. This factor is the number of adjacent channels to
 ** average together and must be a power of 2, e.g., 1, 2, 4, 8, etc.
 ** The spectral averaging factor can be used to reduce the amount of
 ** spectral data sent to the Archive.
 */
 long spectralAveragingFactor;

 /** The sideband defines which sideband to be output: USB or LSB.
 ** Note that if this spectral window is LSB, then its frequency (or channel)
 ** order is reversed from the sky frequency, i.e., lowest sky frequency is
 ** highest baseband frequency.
 ** The SideBandMode should be common to all spectral windows in a baseband
 ** except for the DSB of ReceiverSideBand.
 */

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 82� of 86�

 NetSidebandMod::NetSideband sideBand;

 /** For double sideband receivers (DSB), spectral windows are defined as
 ** pair due to the nature of sideband separation. If SideBandSeparationMode
 ** is PHASE_SWITCHING_SEPARATION or FREQUENCY_OFFSET_SEPARATION then we
 ** must pay attention to which spectral windows comprise a pair. The OT
 ** has 2 options, either associate a pair of spectral windows,
 ** e.g., 1 & 2, or suppress one of the spectral windows in the pair.
 ** Currently it's TBD how this suppression is specified, either by not
 ** including the 'other' spectral window or by setting a flag.
 ** TBD: How to convey the allocation of sub-bands to USB and LSB in
 ** DSB receivers.
 ** If SideBandSeparationMode is not PHASE_SWITCHING_SEPARATION or
 ** FREQUENCY_OFFSET_SEPARATION, then this value is 0 (ignored).
 ** Note: FREQUENCY_OFFSET_SEPARATION applies in this context only to
 ** the ALMA-B correlator, which can perform this separation by sharing
 ** TFB sub-bands between upper and lower side-bands.
 */
 long associatedSpectralWindowNumberInPair;

 /** For DSB receivers, the user could suppress an image spectral window of a
 ** given pair. This would allow the user to improve data rate by discarding
 ** unwanted data. This flag is always TRUE for SSB & 2SB receivers and can
 ** be TRUE or FALSE only for DSB receivers.
 */
 boolean useThisSpectralWindow;

 /** An enumerated value representing the data smoothing function to use.
 */
 WindowFunctionMod::WindowFunction windowFunction;

 /** The observer can select up to 10 sets of contiguous channels (regions)
 ** which produces a channel average result for each channel average region
 ** for a spectral window.
 ** Each band is selected by the following parameters:
 ** -# startChannel The starting (0-based) channel used to calculate the
 ** spectral channel average.
 ** startChannel < effective number of channels
 ** -# numberChannels The region width as the number of spectral channels
 ** used to calculate the spectral channel average for the region.
 ** startChannel + numberChannels < effective number of channels
 */
 ChannelAverageRegionSeq channelAverageRegions;

 /** <ACA correlator specific>
 ** The ACA correlator outputs the spectral results with a frequency
 ** channel profile compatible with that of the baseline correlator
 ** when frqChProfReproduction = TRUE. The ACA correlator outputs the
 ** spectral results with the FX correlator specific frequency channel
 ** profile when frqChProfReproduction = FALSE.
 */
 boolean frqChProfReproduction;

 /** <BL correlator specific>
 ** Options: 2x2, 3x3, 4x4
 */
 CorrelationBitMod::CorrelationBit correlationBits;

 /** <BL correlator specific>
 ** Nyquist sampling/oversampling True means do Nyquist oversampling, False
 ** means non-oversampling.
 */
 boolean correlationNyquistOversampling;

 /** <BL correlator specific>

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 83� of 86�

 ** Options: XX | YY (single pol'n) or XX,YY, (dual pol'n) or XX, YY, XY, YX (full pol'n)
 ** The ACA correlator always outputs all 4 polarization products. The
 ** ACA correlator will share the polnProductsSeq if the polnProductsSeq is
 ** common to all spectral windows in a baseband. For the ACA correlator, the
 ** polarization products can not be changed by the spectral windows.
 ** AUTO_ONLY:
 ** "XX" for autoData: {XX}
 ** "YY" for autoData: {YY}
 ** "XX YY" for autoData: {XX,YY}
 ** "XX XY YX YY" for autoData: {XX,XY,YY}
 **
 ** CROSS_AND_AUTO:
 ** "XX" for autoData: {XX} if for crossData: {XX}
 ** "YY" for autoData: {YY} if for crossData: {YY}
 ** "XX YY" for autoData: {XX,YY} if for crossData: {XX,YY}
 ** "XX XY YX YY" for autoData: {XX,XY,YY} if for crossData: {XX,XY,YX,YY}
 */
 Correlator::StokesParameterSeq polnProductsSeq;

 /** <BL correlator specific>
 ** Boolean selection to perform quantization ('VanVleck') correction on
 ** the lag data. Normally this is true, but for diagnostic purposes, we
 ** may wish to view the uncorrected lags.
 ** <ACA correlator specific comments>
 ** The ACA correlator does not use this parameter, because the ACA-CDP always
 ** does the quantization correction on the spectral results.
 */
 boolean quantizationCorrection;
 };

 /** up to 8 spectral windows per baseband either as 8 separately tunable spectral
 ** windows for SSB & 2SB receivers or 4 pairs of separately tunable spectral
 ** windows for DSB receivers.
 */
 typedef sequence<SpectralWindow,MAXIMUM_NUMBER_SPECTRAL_WINDOWS> SpectralWindowSeq;

 /** \anchor BaseBandConfig. Each baseband can be configured independently
 ** (except for integration & sub-integration durations) with up to four
 ** baseband configurations within a correlator configuration.
 */
 struct BaseBandConfig
 {
 /** The baseband name "BB_1" to "BB_4" to be configured. The TMCDB must
 ** define the mapping between baseband names and correlator quadrants.
 **/
 BasebandNameMod::BasebandName basebandName;

 /** The Correlator Accumulation Mode. If CAM is ALMA_FAST, i.e., 1-ms dumps,
 ** only auto-correlation products are sent to the CDP. If CAM = ALMA_NORMAL,
 ** then both auto- and cross-correlation products are sent to the
 ** CDP w/ a minimum dump time of 16ms.
 **/
 AccumModeMod::AccumMode CAM;

 /** Allows the user to select both auto & cross correlation products or
 ** auto only or cross only when CAM = ALMA_NORMAL. When CAM = ALMA_FAST,
 ** only the auto products are available.
 */
 CorrelationModeMod::CorrelationMode dataProducts;

 /** Defines sideband separation mode as 90d phase switching (PHASE_SWITCHING_SEPARATION),
 ** TFB offsetting (FREQUENCY_OFFSET_REJECTION) or NONE
 ** plus mechanisms to suppress a sideband (PHASE_SWITCH_REJECTION).
 ** FREQUENCY_OFFSET_REJECTION and FREQUENCY_OFFSET_SEPARATION are achieved through
 ** LO offsetting, PHASE_SWITCHING_SEPARATION and PHASE_SWITCH_REJECTION ar performed

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 84� of 86�

 ** with bin switching.
 **
 ** From Rodrigo Amestica (as viewed from P. Napier's note regarding
 ** the Use of LO Offsetting for Spurious Signal Suppression and Sideband
 ** Rejection) sidebands and TFB frequency offsets and ACA frequency
 ** shifts we have the following table (more details available here
 ** http://almasw.hq.eso.org/almasw/bin/view/CORR/SidebandSeparationAndLOOffsetting):
<pre>
 Receiver 180d 90d TFB ACA SideBandSeparationMode
Mode# Type SB Walsh Walsh LO1 L02 Offset Offset

[1] 2SB upper ON OFF ND -ND 0 0 NONE
[2] 2SB lower ON OFF ND ND 0 0 NONE
[3] 2SB upper OFF OFF 2*ND -ND -ND -AC FREQUENCY_OFFSET_REJECTION
[4] 2SB lower OFF OFF 2*ND ND ND AC FREQUENCY_OFFSET_REJECTION
[5] DSB both ON ON 0 0 0 0 PHASE_SWITCHING_SEPARATION
[6] DSB upper OFF OFF 2*ND -ND -ND -AC FREQUENCY_OFFSET_REJECTION
[7] DSB lower OFF OFF 2*ND -ND 3*ND 3*AC FREQUENCY_OFFSET_REJECTION
[8] DSB both
 upper OFF OFF 2*ND -ND -ND N/A FREQUENCY_OFFSET_SEPARATION
 lower OFF OFF 2*ND -ND 3*ND N/A FREQUENCY_OFFSET_SEPARATION
</pre>
Note: the difference between modes {1,2} and {3,4} is the introduction of an LO2
offset, which basically replace the 180d Walsh function cycling for removal of
spurious signals along the data path. As explained in Peter's document a 180d
Walsh function mechanism is not suitable for 'high' resolution modes, therefore,
modes {3,4} are introduce to cope with those observing modes. The importance of
specifying FREQUENCY_OFFSET_REJECTION for modes {3,4} is that this is the only way
we have to tell the BL correlator that TFB mixer LO frequencies require offseting
from the their default frequencies. Modes {1,2} are meant for low frequency
resolution modes and, therefore, use Walsh functions for spurios rejection and
no offset is involved.

And from M. Watanabe, we have a similar view:
<pre>
---------------------+--------+--------+----------+-------+----------------------
 LO (1st and/or 2nd) | TFB | ACA | quadrant | | Sideband of the
 | | | /ACA | CDP | spectral window
--------+------------+--------+--------+----------+-------+ to archive
 90d | LO | LO | LO | 90d | 90d |
 Walsh | offset | offset | offset | Walsh | Walsh |
========+============+========+========+==========+=======+======================
 ON | OFF | - | - | ON | OFF | USB or LSB common to
 | | | | | | all spectral windows
--------+------------+--------+--------+----------+-------+----------------------
 ON | OFF | - | - | OFF | ON | USB, LSB or BOTH for
 | | | | | | each spectral window
--------+------------+--------+--------+----------+-------+----------------------
 ON | OFF | - | - | OFF | OFF | DSB for each
 | | | | | | spectral window
--------+------------+--------+--------+----------+-------+----------------------
 OFF | ON | ON | N/A | - | - | USB or LSB for each
 | | | | | | spectral window
--------+------------+--------+--------+----------+-------+----------------------
 OFF | ON | N/A | ON | - | - | USB or LSB common to
 | | | | | | all spectral windows
--------+------------+--------+--------+----------+-------+----------------------
</pre>
 */
 SidebandProcessingModeMod::SidebandProcessingMode sideBandSeparationMode;

 /** 8 spectral windows can be defined per baseband. In the case of SSB or 2SB
 ** receivers, there can be up to 4 independently tuned spectral windows. For
 ** DSB receivers, there can be up to 4 independently tuned pairs of spectral
 ** windows.

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 85� of 86�

 */
 SpectralWindowSeq spectralWindows;

 /** Nutator switching is common to all basebands, but frequency switching
 ** occurs at the 2-nd LO so it can be different for each baseband.
 **
 */
 BinSwitching_t binSwitchingMode;

 /** <ACA correlator specific>
 ** The polarizationMode defines which and how polarization products
 ** to be processed and output.
 */
 ACAPolarizationMod::ACAPolarization polarizationMode;

 /** <ACA correlator specific>
 ** The center frequency of the fringe rotation.
 ** This value is used in the residual delay compensation to calculate
 ** the phase error.
 */
 double centerFreqOfResidualDelayMHz;
 };

 typedef sequence<BaseBandConfig,MAXIMUM_NUMBER_BASEBANDS> BaseBandConfigSeq;

 /** \anchor CorrelatorConfiguration. 2 The correlator configuration container. */
 struct CorrelatorConfiguration
 {
 /** <BL Correlator specific> The dump interval must be a multiple of 16ms for
 ** cross & auto mode, or 1ms for auto-only mode.
 */
 ACS::TimeInterval dumpDuration;

 /** the integration duration must be a multiple of the dump durations
 */
 ACS::TimeInterval integrationDuration;

 /** The duration of the channel averaging is between 0.5 and 1.024
 ** seconds, such that the smallest number of channel average durations
 ** fits into the spectral integration duration. The units of ChannelAverageDuration
 ** is ACS::TimeInterval, i.e., 100ns. If the integration duration is
 ** less than 0.5 seconds, then no channel averages are calculated.
 */
 ACS::TimeInterval channelAverageDuration;

 /** the subscan duration must be a multiple of of integration duration.
 */
 ACS::TimeInterval subScanDuration;

 /** Type of receiver used for all basebands */
 ReceiverSidebandMod::ReceiverSideband receiverType;

 /** Up to 4 basebands can be configured in a single correlator configuration */
 BaseBandConfigSeq baseBands;

 /** This flag determines which APC results are published. Sequence allows for
 ** CORRECTED or UNCORRECTED or CORRECTED + UNCORRECTED or MIXED
 */
 AtmPhaseCorrectionSeq APCDataSets;

 /** <ACA correlator specific>
 ** This parameter is common among all of four sets of the ACA correlator.
 */
 ACAPhaseSwitchingConfigurations ACAPhaseSwConfig;
 };

ALMA Project
Correlator Subsystem Software Design

Doc # : COMP-70.40.00.00-001-F-DSN
Date: 2009-08-12 Status: Approved
Page: 86� of 86�

};

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Glossary

	2 Requirements
	2.1 SSR Requirements
	2.2 Operations Plan Requirements

	3 Architecture
	3.1 Overview
	3.2 CCC Packages and Functional Overview
	3.2.1 ACS Interface
	3.2.2 Monitor
	3.2.3 Command Dispatcher
	3.2.4 Tunable Filter
	3.2.5 LO Offsetting
	3.2.6 Geometric Delay
	3.2.7 Digitizer Statistics
	3.2.8 Array Management
	3.2.9 Maintenance
	3.2.10 CAN I/F
	3.2.11 Array Time Interface
	3.2.12 TE Handler
	3.2.13 Correlator Configuration Validation

	3.3 Detailed CCC Package Descriptions
	3.3.1 CCC Command Dispatcher
	3.3.2 Geometric Delay
	3.3.3 Array Management
	3.3.4 Monitor
	3.3.4.1 Correlator Hardware Monitor
	3.3.4.2 CCC Hardware Monitor
	3.3.4.3 Correlator Configuration Monitor

	3.3.5 Correlator CAN Commands
	3.3.5.1 LTA CAN Commands
	3.3.5.2 SCC CAN Commands
	3.3.5.3 QCC CAN Commands
	3.3.5.4 Final Adder Commands
	3.3.5.5 DPI CAN Commands

	3.4 Sub-scan Control Sequence
	3.5 Preloaded Configurations
	3.6 Correlator Configuration XML
	3.7 CDP Packages and Functional Overview
	3.7.1 Array Time Interface
	3.7.2 TE Handler
	3.7.3 CDP Monitor
	3.7.4 CDP Maintenance
	3.7.5 Cluster Administration
	3.7.6 CDP Master Node Interface
	3.7.7 Master Data Publisher
	3.7.8 CDP Node
	3.7.9 Node Data Publisher
	3.7.10 Spectral Processing
	3.7.11 Lag Processing
	3.7.12 HPDI 32
	3.7.13 Residual Delay
	3.7.14 Atmospheric Phase Correction
	3.7.15 Sideband Separation
	3.7.16 CDP Configuration
	3.7.17 Array Configuration
	3.7.18 TE Scheduler

	3.8 Detailed CDP Package Descriptions
	3.8.1 Lag Processing
	3.8.2 Correlator Flagging
	3.8.3 Spectral Processing
	3.8.3.1 Lag Normalization
	3.8.3.2 Quantization Correction
	3.8.3.3 Windowing
	3.8.3.4 FFT
	3.8.3.5 TFB Subband Stitching
	3.8.3.6 TFB Bandpass Calibration
	3.8.3.7 TFB Scaling Calibration
	3.8.3.8 Residual Delay Adjustment
	3.8.3.9 Atmospheric Phase Correction
	3.8.3.10 Integration Averaging
	3.8.3.11 Spectral Channel Averaging
	3.8.3.12 Channel Average

	3.8.4 Data Publishing
	3.8.4.1 Scaling Factors

	3.9 Data Flow Robustness
	3.9.1 Detail Data Flow
	3.9.1.1 Data Flow Failure Handling

	3.9.2 Alarms

	3.10 Physical Architecture
	3.10.1 Correlator Control Computer
	3.10.2 Correlator Data Processor
	3.10.3 Network Infrastructure
	3.10.4 Correlator Hardware
	3.10.4.1 Basebands
	3.10.4.2 Correlator Chip Accumulation
	3.10.4.3 Bin switching

	3.10.5 Physical Computer Racks

	3.11 Computer Cooling
	3.12 Dynamic Model
	3.12.1 CCC Timing Discussion
	3.12.2 CDP Compute Node Timing
	3.12.3 CDP Master Node Timing
	3.12.4 Computational Load Resolution
	3.12.5 CDP Processing Pipeline

	3.13 System Reliability
	3.13.1 Single-Point Failures
	3.13.1.1 Correlator Control Computer
	3.13.1.2 Correlator Data Processor Computer

	3.13.2 Sources of Failure
	3.13.3 High altitude disk server
	3.13.4 Error Handling
	3.13.4.1 External interfaces to the CDP Master
	3.13.4.2 External interfaces to the CCC
	3.13.4.3 Internal interfaces between CCC and CDP Master
	3.13.4.4 Internal interfaces between CDP Master and CDP nodes

	3.13.5 MTBF

	3.14 System Startup
	3.14.1 UPS Monitoring

	3.15 Telescope and Monitor Configuration Database

	4 Correlator Simulator
	4.1 Correlator Simulator Software Components
	4.1.1 CAN Commands
	4.1.2 Lag Data
	4.1.3 Configuration Tool

	4.2 ALMA Observatory Simulator

	5 Correlator GUI
	5.1 Correlator configuration and spectral viewing
	5.2 Correlator monitoring and diagnostics

	6 Correlator Monitoring GUI
	6.1.1 Error Diagnostic
	6.1.2 Monitor Point Viewing
	6.1.3 Diagnostic Testing

	7 References
	8 System Interfaces
	8.1 Package – Interface Relationship

	9 Appendices
	9.1 Minimum Integration Duration
	9.1.1.1 Archive Limitations
	9.1.1.2 Sideband separation
	9.1.1.3 Science Requirements

	9.2 Equations
	9.2.1 Vs Subtraction
	9.2.2 Lag Normalization
	9.2.3 Geometric Delays
	9.2.4 Atmospheric Phase Correction
	9.2.5 Digitization Correction
	9.2.6 Windowing Functions
	9.2.7 Discrete Fourier Transforms
	9.2.8 Channel Averaging
	9.2.9 Sideband Separation

	9.3 Correlator Hardware CAN Commands
	9.3.1 Common CAN Commands
	9.3.2 LTA Specific CAN Commands
	9.3.3 SCC-Specific CAN Commands
	9.3.4 QCC-Specific CAN Commands

	9.4 Correlator Configuration

