KPAF Project

Note 0.1

K-band Phased Array Feed: Planning Document

Richard Prestage

11 June 2016

Abstract

This document tracks the development and planning for the KPAF project proposal.

History

Version	Date	Notes
0.1	11 June 2016	Original Version (Richard Prestage)

Contents

1	Introduction	2
2	Proposal Development Schedule	2
3	To Do List	2
4	Project Scope	2
5	KPAF sub-systems	3
	5.1 Science Case	3
	5.2 System Specifications	3
	5.3 PAF Microwave Components	3
	5.4 Dewar, Cryogenics and Packaging	3
	5.5 Frontend Warm Electronics	3
	5.6 Frontend Monitor and Control	3
	5.7 LO / IF system	3
	5.8 Beamformer Hardware	3
	5.9 Beamformer Firmware / HPC software	3
	5.10 Beamformer Monitor and Control system	3

1 Introduction

This document is intended to plan and track the work in needed for each the KPAF sub-system. The goal of the current work is to produce a preliminary, overall system design, developed to such an extent that any critical research and development items have been identified, and specifications, staff resource allocations, schedule and cost have been estimated to a level of detail sufficient for an NSF ATI proposal.

2 Proposal Development Schedule

- June: initial discussions; basic system specifications and concept
- July / August: elucidation of key components:
 - element design
 - LNA design
 - General beamformer hardware / firmware / HPC approach
- September: Detailed system design
- October: Proposal development
- November: Proposal submission

3 To Do List

- I cannot find any restrictions on number of ATI proposals a single organization can submit. Are there any? Any other administrative rules we need to be aware of?
- Neal Erickson's ATI proposal to complete PHAMAS was declined. We should find out why. Should we invite him to join our team?
- initiate PAF element design
- initiate LNA design
- perform detailed performance analysis (polarization / number of beams / T_{sys} trade-offs).
- agree general beamformer hardware / firmware / software approach (ICEboard, Python M & C software).
- define PAF physical constraints (dewar size, weight)
- define first-cut science specifications (frequency range, resolution, etc)
- initiate high-level system design block diagrams
- agree appropriate sub-systems, and assign sub-system leads to each one

4 Project Scope

The scope of the project is to build a complete K-band PAF, LO/IF system and digital beamformer, installed and commissioned for PI use on the GBT.

In scope:

- all hardware, firmware, and directly associated software
- mechanical, electrical, cryogenic and all other interfacing to the GBT
- any necessary modifications to the GBT receiver room turret
- all necessary observing strategies and calibration algorithms
- monitoring and control through a lightweight GBT system (currently the Python-based "autodealer" and "dealer/player" systems)
- storage of TBD data products on the GBT high-performance filesystem
- beamforming software capable of producing fine-channelized beams
- documentation

Out of Scope:

- 10 MHz, 1 PPS, LO reference and any other reference / control hardware signals
- helium compressor and lines

- support of the instrument for common-user operation
- integration of the instrument into the full GBT monitor and control system
- offline imaging and data reduction and analysis post formed-beams
- long-term data storage and archiving

To Be Determined:

- Provision of a network switch can we use the GBT (BTL) switch?
- Provision of High Performance Computers (HPCs) can we assume they already exist?

5 KPAF sub-systems

5.1 Science Case

5.2 System Specifications

5.3 PAF Microwave Components

- single or dual polarization?
- element design, number, spacing
- LNAs
- other frontend microwave components

5.4 Dewar, Cryogenics and Packaging

5.5 Frontend Warm Electronics

5.6 Frontend Monitor and Control

- FE monitor and control hardware
- FE monitor and control firmware
- FE monitor and control software

5.7 LO / IF system

- Receiver cabin components
- Fiber run
- Equipment room components

5.8 Beamformer Hardware

- Analog to digital conversion
- F-engine (coarse / fine channelization)
- X-engine (cross correlation)

5.9 Beamformer Firmware / HPC software

5.10 Beamformer Monitor and Control system