GBT Subreflector Actuator Functions in C

Don Wells*

January 21, 1998

Abstract

Two ANSI-C functions are described: srDisplacementToLength(), which accepts displacements (three linear, three angular) from the “home” position of the subreflector and computes six actuator lengths, and srLengthToDisplacement(), which performs an iterative numerical inversion of function srDisplacementToLength() (i.e., it accepts actuator lengths and produces displacements). Partial derivatives of the actuator lengths wrt translation and tilt are tabulated.

Contents

1 Introduction .. 2
 1.1 Coordinate systems and axis permutations 2

2 The functions and their algorithms 4
 2.1 The inverse kinematic problem: srDisplacementToLength() ... 4
 2.2 The forward kinematic problem: srLengthToDisplacement.c ... 6
 2.3 Actuator length calibration: srActuatorsLengths.c ... 8

3 Test cases & timing measurements 10

4 Partialls of translation/tilt motions wrt actuator motions 10

5 Safety Considerations 15

A srInclude.h ... 16

Bibliography ... 18

*mailto:dwells@nrao.edu
1 Introduction

The GBT subreflector actuator system is an example of a “Stewart Platform” [Ste66]. Such devices consist of a movable platform which is connected to a fixed structure by a set of linear actuators via U-joints. A wide variety of arrangements of the actuators and U-joint locations is possible. Figure 1 is a conceptual drawing of the arrangement used in the GBT subreflector. By studying the figure the reader can become convinced that the six linear actuators will implement three translation and three rotation motions, a total of six degrees of freedom. Figure 2 shows a view of the tip of the GBT feedarm as seen from the right side. The actuators are labelled, and their length ranges are noted.

1.1 Coordinate systems and axis permutations

The \((x_s,y_s,z_s)\) subreflector axes shown in Figure 1 are not the same as the elevation (tipping) structure coordinate system which was discussed in [WK95]! The axes are permuted and rotated. The \(z_s\) axis corresponds to \(x_e\). The \(y_s\) and \(z_s\) axes correspond (roughly) to \(z_e\) and \(y_e\) respectively (they are rotated by \(36.7^\circ\) about \(z_e/z_s\)). The origin of \((x_s,y_s,z_s)\) shown in Figure 1 is at \((0,-168.98,\pm 2511.92)\) in the “reflector” coordinate system [KM93, Kin94], or \((0,-2327.96,\pm 4608.71)\) in the elevation coordinate system [WK95, pp.15–16], which is the subreflector “vertex”. This point is not the mathematical vertex of the ellipsoid; rather it is the point of intersection of the axis of the feedhorn with the ellipsoid.
Figure 2: Side view drawing of the subreflector actuators (facing left)

Figure 1 also shows two other axes, \(x_n \) and an unlabelled axis 90° from it and 36.7° from \(y_s \). The unlabelled axis is parallel to the axis of the paraboloid, \(z_r \) and \(z_e \). \(x_n \) is parallel to \(y_e \) and \(y_s \). The "n" of \(x_n \) is for "nutation", because it is the axis about which the subreflector should be rotated to move the beam in azimuth (constant elevation) between feedhorns. The 36.7° tilt of the subreflector coordinate system was specified by Srikanth [Sri90] so that motion of the subreflector in \(y_s \) only will move the Gregorian focus along the axis of the feedhorn.

Note that the axes of the \((x_n,y_s,z_s)\) system are skewed: \(x_n \) is not orthogonal to \(y_s \)!

Also, we translate the subreflector along \(z_s \), but we tilt it about \(x_n \)!

<table>
<thead>
<tr>
<th>encoder</th>
<th>M&C index</th>
<th>servo amplifier name</th>
<th>Location</th>
<th>(z_s) (in)</th>
<th>(y_s) (in)</th>
<th>(z_e) (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(Y_1)</td>
<td>tip of triangle</td>
<td>57.225</td>
<td>39.219</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(Y_2)</td>
<td>right-hand</td>
<td>-30.150</td>
<td>55.703</td>
<td>51.123</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>(Y_3)</td>
<td>left-hand</td>
<td>-30.150</td>
<td>55.703</td>
<td>-51.123</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>(X_1)</td>
<td>right-hand</td>
<td>-40.493</td>
<td>48.375</td>
<td>51.123</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>(X_2)</td>
<td>left-hand</td>
<td>-40.493</td>
<td>48.375</td>
<td>-51.123</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>(Z_1)</td>
<td>lateral motion</td>
<td>-18.495</td>
<td>48.856</td>
<td>45.473</td>
</tr>
</tbody>
</table>

Table 1: Identifications of the GBT subreflector actuators
2 The functions and their algorithms

The "forward kinematics problem" (given lengths \(L_i \), find the platform pose) is analytically intractable. The inverse kinematics problem (given the pose, find \(L_i \)) is, however, easy to compute: transform the coordinates of the platform U-joints using the pose parameters and then the lengths are obtained as the Euclidian distances between the respective U-joints. The forward problem can then be solved numerically by iterative inversion of the inverse algorithm. The GBT inverse and forward kinematic problems have been implemented in C, as described below.

The original version of the code below was constructed during April and May of 1993 by the author. It was all in one file named \texttt{tm19.c} (the name refers to [Nan91]), which was delivered to the Precision Controls Division [PCD] of CRSI in May 1993. PCD incorporated the code into the GBT's Operator Control Unit [OCU]. The \texttt{tm19.c} version of these algorithms did not include actuator end-point offsets, because the OCU has no need for this refinement.

Fred Schwab (fschwab@nrao.edu) has provided advice on the mathematical methods used in these implementations, especially for srLengthToDisplacement().

2.1 The inverse kinematic problem: srDisplacementToLength()

```c
#include "srInclude.h"
#include "mathVectorMatrix.h"
#include "gbtOpticalConstants.h"

int srDisplacementToLength(
    double trans[3], /* delta translations (in) */
    double tilts[3], /* delta tilts (deg) */
    double temp, /* temperature (deg_C) */
    double encoder[6], /* output: lengths to use (in) */
    double apex_delta[3][6], /* U-joint errors(in) */
    double home_sub_delta[3][6]) /* U-joint errors(in) */
```

Function \texttt{srDisplacementToLength()} is a transliteration from Basic to ANSI-C of the algorithm given in [Nan91]. The original version accepted only two angular displacements. \texttt{srDisplacementToLength()} supports a third angle, \(\theta_y \), by inserting another rotation matrix after the \(\theta_x \) rotation (if \(\theta_y = 0 \), this is an identity matrix, consistent with the algorithm of [Nan91]). Rotation about \(\theta_y \) is needed for focus tracking, because of the elevator asymmetry.
const double home_sub_end[3][6] = {
 {57.225, -30.15, -30.15, -40.493, -40.493, -18.495}, /* X_s */
 {39.219, 55.703, 55.703, 48.375, 48.375, 48.856}, /* Y_s */
 {0.0, 51.123, -51.123, 51.123, -51.123, 45.4731 /* Z_s */
}; /* desired actual lengths of the actuators */

MVM_PRIVATE_VARIABLES

The following two arrays of U-joint coordinates of the (fixed) feedarm apex ends of the 6 actuators and the “home” position of the subreflector ends of the actuators are from [Sch92, p.4], and are identical to those in [Zai92, p.A9]. They are in the subreflector coordinate system (rotated 36.7° wrt the tipping and the reflector coordinate systems) and are in inches.

const double apex_end[3][6] = {
 /* L1 L2 L3 L4 L5 L6 */
 {58.391, -29.753, -29.753, -163.08, -163.08, -17.7981, /* X_s */
 {150.161, 166.683, 166.683, 82.478, 82.478, 70.290}, /* Y_s */
 {0.0, 51.123, -51.123, 51.123, -51.123, -12.25} /* Z_s */
};

Function arguments home_sub_delta[3][6] and apex_delta[3][6] specify offsets to the above endpoint coordinates; these arrays must be defined by the code which calls function srDisplacementToLength().

Step 1 Compute rotation matrix to transform endpoints

This operation is done as five rotations:\footnote{Macro ANGLES_2_MATRIX(), which is invoked in this step, is defined in mathVectorMatrix.h; it computes a rotation matrix from up to five rotations about specified axes.}

- Transform from x_n to x axis (36.7° rotation)
- Rotation θ_z about x axis
- Transform from x_n back to x axis
- Rotation θ_y about y axis\footnote{This rotation was not included in [Nan91]. Also, in earlier versions of this function, such as the code shipped to PCD in May 1993 and incorporated by them into the OCU software, this rotation by θ_y was done in the transformed (x_n) coordinate system rather than in subreflector coordinates.}
- Rotation θ_x about z axis

\begin{align*}
 c1 &= \text{GBT_SR_AXIS_TLT} \times \text{DTR}; \quad \text{/* 36.7 deg in gbtOpticalConstants.h */} \\
 tx &= \text{tilts}[0] \times \text{DTR}; \quad \text{/* DTR=degrees-to-radians in <ditto> */} \\
 ty &= \text{tilts}[1] \times \text{DTR}; \\
 tz &= \text{tilts}[2] \times \text{DTR}; \\
 \text{ANGLES_2_MATRIX(MC, ma, Z,-c1, X,+tx, Z,+c1, Y,-ty, Z,+tz);} \\
\end{align*}
Step 2 Compute the new subreflector ends of the actuators

Rotation matrix \mathbf{ma} is multiplied by vector home_sub_end to get the new lengths. The empirical calibration matrices hom_sub_delta and apex.delta are added to the design values of the end-point coordinates.

```c
for (m = 0; m < 6; m++) {
    for (i = 0; i < 3; i++) {
        for (j = 0; j < 3; j++)
            sum += (ma[i][j] * (home_sub_end[j][m] + home_sub_delta[j][m]));
    }
    new_sub_end[i][m] = trans[i] + sum;
}
```

```c
diff = (new_sub_end[i][m] - (apex_end[i][m] + apex_delta[i][m]));
lsum += (diff * diff);
```

```c
actual[m] = sqrt (lsum);
```

Step 3 Compute actuator encoder values to use

We must correct for actuator encoder zero point and scale errors, and for the effective thermal expansion coefficient of the actuator. See discussion in section 2.3.

```c
for (m = 0; m < 6; m++)
    encoder[m] = srActuatorsLengths(m, actual[m], temp);
```

Step 4 Test the maximum-delta rules

These rules were specified by the Loral engineers who designed the GBT Gregorian subreflector actuators; they assert [Zai92] that no binding or interference of the mechanism will occur if these rules are obeyed, and if positions stay within the “required motion” box of the GBT.

```c
status = 0;
if (fabs(encoder[0] - encoder[1]) > 2.60) status |= 1;
if (fabs(encoder[0] - encoder[2]) > 2.60) status |= 2;
if (fabs(encoder[1] - encoder[2]) > 2.62) status |= 4;
if (fabs(encoder[3] - encoder[4]) > 1.40) status |= 8;
if (encoder[1] - encoder[5]) < 39.19) status |= 16;
if (encoder[1] - encoder[5]) > 62.98) status |= 32;
```

return (status);
}

2.2 The forward kinematic problem: srLengthToDisplacement.c

```c
int srLengthToDisplacement( /* returns !=0 if maxdelta fails */
double len[6], /* input actuator lengths (in) */
double temp, /* temperature (deg_C) */
double trans[3], /* delta translations (in) */
double tilts[3], /* delta tilts (deg) */
double apex_delta[3][6], /* U-joint error(in) */
double home_sub_delta[3][6], /* U-joint error(in) */
int *iter) /* N-R iterations */
```

The algorithm of srLengthToDisplacement() is the Newton-Raphson iterative method for solving a system of nonlinear equations. N-R multiplies the inverse of the Jacobian (partial derivative) matrix by the residual
vector to obtain a vector of corrections which are subtracted from the current solution vector. In a nonlinear problem, such as this one, the Jacobian matrix varies with the solution vector. Because the inverse Jacobian is expensive to compute we approximate it by using only the inverse Jacobian at the "home position" of the subreflector; this works because this problem is nearly linear in the neighborhood of the home position. The entire range of valid lengths of the actuators has not been explored to verify that the inversion works for all cases, especially when argument \texttt{disp} is initialized to zero (intermediate iterations might violate the length rules). Normally we will have \texttt{disp} = \epsilon, and the problem is nearly linear; use of an approximate inverse Jacobian should only result in extra iterations in extreme cases.

/* srLengthToDisplacement.c --- compute displacements from actuator lengths
D.Wells, NRAO-CV
1995-05/96-02
1997-11-10: minor change of comments
*/

#include <math.h>
#include "gbtOpticalConstants.h"
#include "srInclude.h"

int srLengthToDisplacement(/* returns !=0 if maxdelta fails */
 double len[6], /* input actuator lengths (in) */
 double temp, /* temperature (deg_C) */
 double trans[3], /* delta translations (in) */
 double tilts[3], /* delta tilts (deg) */
 double apex_delta[3][6], /* U-joint error (in) */
 double home_sub_delta[3][6], /* U-joint error (in) */
 int *iter) /* N-R iterations */
{

 This function iterates the Newton-Raphson algorithm until the computed lengths agree with the input lengths. It uses \texttt{trans[3]} and \texttt{tilts[3]} as its initial value for the iterations (i.e., \texttt{trans[3]} and \texttt{tilts[3]} are both input and output arguments of the function). The calling program should either initialize \texttt{trans[3]} and \texttt{tilts[3]} to zeroes, or should use the last returned pose if the new lengths are almost the same as for the last call.

 int i, j, status;
 double lenp[6], resid[6], adiff, biggest_resid, sum, v[6];
 const int maxiter = (10);
 const double tolerance = (0.0001); /* inches */

 The following Inverse Jacobian matrix \texttt{ji[6][6]} of the transformation (see [Sch92, Eq.(4)]) was computed at the "home" position using a Mathematica program supplied by F.Schwab. The values are essentially identical to those of Eq.(11) on p.6 of [Sch92], except that the signs of the partials of length \texttt{ort} angle in rows 4-6 are flipped because of an opposite convention for angle sense.

 const double \texttt{ji[6][6]} = {
 /* L1 L2 L3 L4 L5 L6 */
 { -0.5202510, +0.1216542, +0.1216542, +0.5166016, +0.5166016, 0.0 }, /*dX*/
 { -0.3450957, -0.3266342, -0.3266342, -0.0030950, -0.0030950, 0.0 }, /*dY*/
 { -0.0491685, -0.7560834, +0.4310301, -0.1789911, +0.1897813, +1.06678401 }, /*dZ*/
 { 0.0, +0.0094583, -0.0094583, -0.0060318, +0.0060318, 0.0 }, /*txX*/
 { 0.0, +0.0036598, -0.0036598, +0.0081530, -0.0081530, 0.0 }, /*txY*/
 }
for (*iter = 0; *iter < maxiter; (*iter)++) {

Step 1 Compute actuator lengths

status = srDisplacementToLength (trans, tilts, temp, lenp, apex_delta, home_sub_delta);
if (status != 0) break;

Step 2 Compare computed lengths to input lengths

biggest_resid = 0.0;
for (i = 0; i < 6; i++) {
 resid[i] = (len[i] - lenp[i]);
 adiff = fabs (resid[i]);
 if (adiff > biggest_resid) biggest_resid = adiff;
}

Step 3 Convergence test

Terminate iteration loop if biggest length residual is less than the tolerance.

if (biggest_resid < tolerance) break;

Step 4 otherwise, compute new correction vector

The residual vector resid[] is multiplied by the matrix J^{-1} to get the Newton-Raphson correction vector $v[]$:

for (j = 0; j < 6; j++) {
 for (sum = 0.0, i = 0; i < 6; i++) sum += (resid[i] * ji[j][i]);
 v[j] = sum;
}

Step 5 Finally, apply the correction vector (update the pose vectors)

for (i = 0; i < 3; i++) {
 trans[i] += v[i];
 tilts[i] += (v[i+3] / DTR);
}
return (status);

2.3 Actuator length calibration: srActuatorsLengths.c

double srActuatorsLengths(/* returns act j encoder length (in) */
 int j, /* which actuator 0-5 */
 double actual, /* actual length of actuator j (in) */
 double temp) /* temperature (deg_C) */

 { -0.0114321,+0.0057268,+0.0057268,-0.0000410,-0.0000410, 0.0 } */tZ*/

 for (*iter = 0; *iter < maxiter; (*iter)++) {

 status = srDisplacementToLength (trans, tilts, temp, lenp, apex_delta, home_sub_delta);
 if (status != 0) break;

 biggest_resid = 0.0;
 for (i = 0; i < 6; i++) {
 resid[i] = (len[i] - lenp[i]);
 adiff = fabs (resid[i]);
 if (adiff > biggest_resid) biggest_resid = adiff;
 }

 if (biggest_resid < tolerance) break;

 else, compute new correction vector

 The residual vector resid[] is multiplied by the matrix J^{-1} to get the Newton-Raphson correction vector $v[]$:

 for (j = 0; j < 6; j++) {
 sum = 0.0;
 for (i = 0; i < 6; i++) sum += (resid[i] * ji[j][i]);
 v[j] = sum;
 }

 Finally, apply the correction vector (update the pose vectors)

 for (i = 0; i < 3; i++) {
 trans[i] += v[i];
 tilts[i] += (v[i+3] / DTR);
 }
 return (status);
 }
The following function is a place-holder; the actuator length calibration done by the metrology group [Par96] will be incorporated into this function in a future release of this code.

```c
/* srActuatorsLengths.c --- compute actuator length corrections
 D.Wells, NRAO-CV
 1997-05-21: initial version
 1998-01-15: minor revisions
 */

#include "srInclude.h"
#include "gbtOpticalConstants.h"

double srActuatorsLengths(
                int j,    /* which actuator 0-5 */
                double actual, /* actual length of actuator j (in) */
                double temp) /* temperature (deg_C) */
{
    double encoder; /* encoder value to produce desired actual length */

    The six actuators of the GBT Gregorian subreflector have been measured in the NRAO-GB metrology laboratory in order to relate the length values indicated by their magnetostrictive encoders to their actual lengths from U-joint to U-joint. This function incorporates this calibration information. It takes the actual length which is desired and returns the encoder value to command to get that length.

    The function interface as defined here makes no provision for an error return on illegal j or illegal actual; it is presumed that such errors will be caught elsewhere in the Gregorian focus tracking algorithms.

    The temp argument will be used to include thermal expansion coefficients in the calculation of the actual lengths. (The actual lengths will be the nominal values, except for zero point and scale errors, at the RIGGING_TEMP, which is 21.1°C = 70°F for the GBT.) The magnetostrictive encoders are made of some type of stainless steel, whereas the rest of the encoder is made of a steel which is similar to the steel in the GBT structure. This stainless steel has a thermal coefficient which is significantly different from the coefficient for the conventional steel. The resulting differential thermal expansion is just barely significant in the GBT.

    switch (j) {
      case (0): /* Y1 actuator */
        encoder = actual; break;
      case (1): /* Y2 actuator */
        encoder = actual; break;
      case (2): /* Y3 actuator */
        encoder = actual; break;
      case (3): /* X1 actuator */
        encoder = actual; break;
      case (4): /* X2 actuator */
        encoder = actual; break;
      case (5): /* Z actuator */
        encoder = actual; break;
      default:
        encoder = actual;
    }
    return (encoder);
}
```

3 With the exception that the backup structure of the Gregorian subreflector is made of aluminum.
Table 2: Points used in derivatives computation

<table>
<thead>
<tr>
<th>Name</th>
<th>(\Delta x)</th>
<th>(\Delta y)</th>
<th>(\Delta z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>G-x-y-z</td>
<td>-9.49</td>
<td>-3.63</td>
<td>-4.00</td>
</tr>
<tr>
<td>G-x-y+z</td>
<td>-9.49</td>
<td>-3.63</td>
<td>4.00</td>
</tr>
<tr>
<td>G-x+y-z</td>
<td>-9.49</td>
<td>3.63</td>
<td>-4.00</td>
</tr>
<tr>
<td>G+x-y-z</td>
<td>9.49</td>
<td>-3.63</td>
<td>-4.00</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>9.49</td>
<td>-3.63</td>
<td>4.00</td>
</tr>
<tr>
<td>G+G-x-y-z</td>
<td>-9.49</td>
<td>-22.63</td>
<td>-0.83</td>
</tr>
<tr>
<td>G+G-x-y+z</td>
<td>-9.49</td>
<td>-22.63</td>
<td>0.83</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>9.49</td>
<td>11.63</td>
<td>-0.83</td>
</tr>
<tr>
<td>G+F+y-z</td>
<td>-9.49</td>
<td>11.63</td>
<td>0.83</td>
</tr>
<tr>
<td>G+F-x+z</td>
<td>9.49</td>
<td>-22.63</td>
<td>-0.83</td>
</tr>
<tr>
<td>G+F-x+y+z</td>
<td>9.49</td>
<td>-22.63</td>
<td>0.83</td>
</tr>
<tr>
<td>G+F+x+y-z</td>
<td>9.49</td>
<td>11.63</td>
<td>-0.83</td>
</tr>
<tr>
<td>G+F+x+y+z</td>
<td>9.49</td>
<td>11.63</td>
<td>0.83</td>
</tr>
</tbody>
</table>

3 Test cases & timing measurements

The four testcase calculations and two timing measurements shown in Figure 3 were made on a SPARC system. Case [1] verifies the lengths of the actuators in the “home” position. Case [2] computes a pose with substantial translation and tilt displacements. In Case [3] the lengths computed in case [2] are inverted in 8 Newton-Raphson iterations to yield the original commanded pose, after having started the iteration with zero displacement. Case [4] demonstrates that only 3 iterations are needed if the the starting pose is near the correct answer.

4 Partials of translation/tilt motions \(\text{wrt}\) actuator motions

During preparation of a review [Wel98] of the motion requirements for the subreflector, there was a need to know how the velocity and acceleration limits on actuators \(L_i\) would translate to limits on \(\Delta X_x, \Delta Y_y, \Delta Z_z, \theta_{x_1}, \theta_{y_1}\) and \(\theta_{z_1}\) over the allowed envelope of displacements. A program was built to calculate the required partial derivatives by numerical differentiation. Table 2 gives the coordinates of the points in the envelope for which partials were computed; it extends the official envelope to a wider box in the region around the “home” position in order to support beam switching. Tables 3 through 8 display the computed partials. In each case we want to know the maximum absolute value of the partial, and this is shown at the end of each table. For each point we look for the largest partial derivative along the row and print it in bold font. The summary row at the end of each table shows which actuator will be the limiting case for each type of motion. The actuators which have the largest derivatives in Tables 3 through 5 (\(\Delta x, \Delta y, \Delta z\) cases) are obvious after examining the geometry in Figures 1 and 2, but the 0.836 maximum for \(L_6\) for the “F-x-y-z” case in Table 6 surprised the author, who expected that \(L_2\) and \(L_3\) would always be the limiting cases (as they are for the “home” case). The \(L_1\) result in Table 8 surprised the author at first, but it was obvious after examination of the \(x_1\) coordinates in Table 1 (the lever arm for \(L_1\) is almost twice as large as for \(L_2\) and \(L_3\)).
Kernel says CPU's clock rate is 150.0 MHz.
Kernel says main memory's clock rate is 50.0 MHz.

Sun-4 floating-point controller version 0 found.
A Fujitsu/Ross RT620 hyperSPARC chip is available.
FPU's frequency appears to be approximately 152.9 MHz.

% [1] srDisplacementToLength() - 'home position' case:
% trans = [0, 0, 0]
% tilts = [0, 0, 0]
% len = [110.948, 110.981, 110.981]
% status = [0]
10000 executions in 240000 usec --> 24.0 usec/execution

% [2] srDisplacementToLength() - large displacement case:
% trans = [18, -24, 1]
% tilts = [-1, -0.3, 0.5]
% len = [135.455, 135.654, 137.007]
% status = [0]

% [3] srLengthToDisplacement() - inversion of [2] with trans[]=tilts[]=0:
% len = [135.455, 135.654, 137.007]
% trans = [151.84, 151.901, 75.4609]
% tilts = [0, 0, 0]
% status = [0]
8 Newton-Raphson iterations.

% len = [135.455, 135.654, 137.007]
% trans = [18.001, -24.001, 1.00103]
% tilts = [-1.00099, -0.298997, 0.499]
% status = [0]
3 Newton-Raphson iterations.

10000 executions in 1100000 usec --> 110.0 usec/execution

Figure 3: Test cases and timing measurements
Table 3: Partials of length L_i wrt translation Δx \((\frac{\partial L_i}{\partial \Delta x})\)

<table>
<thead>
<tr>
<th>Point</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>-0.010</td>
<td>-0.003</td>
<td>-0.003</td>
<td>0.963</td>
<td>0.963</td>
<td>-0.011</td>
</tr>
<tr>
<td>G-x-y-z</td>
<td>-0.092</td>
<td>-0.085</td>
<td>-0.085</td>
<td>0.948</td>
<td>0.948</td>
<td>-0.169</td>
</tr>
<tr>
<td>G-x+y-z</td>
<td>-0.092</td>
<td>-0.085</td>
<td>-0.085</td>
<td>0.948</td>
<td>0.948</td>
<td>-0.150</td>
</tr>
<tr>
<td>G-x+y+z</td>
<td>-0.098</td>
<td>-0.091</td>
<td>-0.091</td>
<td>0.965</td>
<td>0.965</td>
<td>-0.176</td>
</tr>
<tr>
<td>G+x-y-z</td>
<td>0.073</td>
<td>0.079</td>
<td>0.079</td>
<td>0.961</td>
<td>0.961</td>
<td>0.148</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>0.073</td>
<td>0.079</td>
<td>0.079</td>
<td>0.961</td>
<td>0.961</td>
<td>0.132</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>0.078</td>
<td>0.085</td>
<td>0.085</td>
<td>0.974</td>
<td>0.974</td>
<td>0.154</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>0.078</td>
<td>0.085</td>
<td>0.085</td>
<td>0.974</td>
<td>0.974</td>
<td>0.136</td>
</tr>
<tr>
<td>F-x-y-z</td>
<td>-0.079</td>
<td>-0.073</td>
<td>-0.073</td>
<td>0.894</td>
<td>0.894</td>
<td>-0.139</td>
</tr>
<tr>
<td>F-x+y-z</td>
<td>-0.079</td>
<td>-0.073</td>
<td>-0.073</td>
<td>0.894</td>
<td>0.894</td>
<td>-0.137</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>-0.106</td>
<td>-0.099</td>
<td>-0.099</td>
<td>0.891</td>
<td>0.891</td>
<td>-0.173</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>-0.106</td>
<td>-0.099</td>
<td>-0.099</td>
<td>0.891</td>
<td>0.891</td>
<td>-0.168</td>
</tr>
<tr>
<td>F+x-y-z</td>
<td>0.063</td>
<td>0.068</td>
<td>0.068</td>
<td>0.919</td>
<td>0.919</td>
<td>0.122</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>0.063</td>
<td>0.068</td>
<td>0.068</td>
<td>0.919</td>
<td>0.919</td>
<td>0.120</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>0.084</td>
<td>0.092</td>
<td>0.092</td>
<td>0.986</td>
<td>0.986</td>
<td>0.151</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>0.084</td>
<td>0.092</td>
<td>0.092</td>
<td>0.986</td>
<td>0.986</td>
<td>0.147</td>
</tr>
<tr>
<td>Limit case(s)</td>
<td></td>
<td></td>
<td></td>
<td>0.986</td>
<td>0.986</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Partials of length L_i wrt translation Δy \((\frac{\partial L_i}{\partial \Delta y})\)

<table>
<thead>
<tr>
<th>Point</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>-1.000</td>
<td>-1.000</td>
<td>-1.000</td>
<td>-0.268</td>
<td>-0.268</td>
<td>-0.347</td>
</tr>
<tr>
<td>G-x-y-z</td>
<td>-0.995</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.316</td>
<td>-0.316</td>
<td>-0.416</td>
</tr>
<tr>
<td>G-x-y+z</td>
<td>-0.995</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.316</td>
<td>-0.316</td>
<td>-0.371</td>
</tr>
<tr>
<td>G-x+y-z</td>
<td>-0.994</td>
<td>-0.995</td>
<td>-0.995</td>
<td>-0.260</td>
<td>-0.260</td>
<td>-0.309</td>
</tr>
<tr>
<td>G-x+y+z</td>
<td>-0.994</td>
<td>-0.995</td>
<td>-0.995</td>
<td>-0.260</td>
<td>-0.260</td>
<td>-0.273</td>
</tr>
<tr>
<td>G+x-y-z</td>
<td>-0.997</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.274</td>
<td>-0.274</td>
<td>-0.418</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>-0.997</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.274</td>
<td>-0.274</td>
<td>-0.372</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.224</td>
<td>-0.224</td>
<td>-0.310</td>
</tr>
<tr>
<td>F-x-y-z</td>
<td>-0.997</td>
<td>-0.997</td>
<td>-0.997</td>
<td>-0.448</td>
<td>-0.448</td>
<td>-0.606</td>
</tr>
<tr>
<td>F-x+y-z</td>
<td>-0.997</td>
<td>-0.997</td>
<td>-0.997</td>
<td>-0.448</td>
<td>-0.448</td>
<td>-0.595</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>-0.994</td>
<td>-0.995</td>
<td>-0.995</td>
<td>-0.194</td>
<td>-0.194</td>
<td>-0.166</td>
</tr>
<tr>
<td>F+x-y-z</td>
<td>-0.994</td>
<td>-0.995</td>
<td>-0.995</td>
<td>-0.194</td>
<td>-0.194</td>
<td>-0.162</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>-0.998</td>
<td>-0.998</td>
<td>-0.998</td>
<td>-0.394</td>
<td>-0.394</td>
<td>-0.607</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>-0.998</td>
<td>-0.998</td>
<td>-0.998</td>
<td>-0.394</td>
<td>-0.394</td>
<td>-0.597</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.996</td>
<td>-0.167</td>
<td>-0.167</td>
<td>-0.167</td>
</tr>
<tr>
<td>Limit case(s)</td>
<td>-1.000</td>
<td>-1.000</td>
<td>-1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Partials of length L_i wrt translation Δz

\[
\frac{\partial L_i}{\partial \Delta z} \quad \text{(inch/inch)}
\]

<table>
<thead>
<tr>
<th>Point</th>
<th>L_1 Y1</th>
<th>L_2 Y2</th>
<th>L_3 Y3</th>
<th>L_4 X1</th>
<th>L_5 X2</th>
<th>L_6 Z1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.937</td>
</tr>
<tr>
<td>G-x-y-z</td>
<td>-0.034</td>
<td>-0.034</td>
<td>-0.034</td>
<td>-0.033</td>
<td>-0.033</td>
<td>0.893</td>
</tr>
<tr>
<td>G-x+y+z</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.034</td>
<td>0.034</td>
<td>0.916</td>
</tr>
<tr>
<td>G-x+y-z</td>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
<td>0.035</td>
<td>0.035</td>
<td>0.934</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>-0.034</td>
<td>-0.034</td>
<td>-0.034</td>
<td>-0.029</td>
<td>-0.029</td>
<td>0.934</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.029</td>
<td>0.029</td>
<td>0.919</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>-0.037</td>
<td>-0.037</td>
<td>-0.037</td>
<td>-0.029</td>
<td>-0.029</td>
<td>0.938</td>
</tr>
<tr>
<td>F-x-y-z</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.006</td>
<td>0.783</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.792</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>-0.008</td>
<td>-0.008</td>
<td>-0.008</td>
<td>-0.007</td>
<td>-0.007</td>
<td>0.971</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
<td>0.972</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.005</td>
<td>-0.005</td>
<td>0.785</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.006</td>
<td>0.006</td>
<td>0.794</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>-0.008</td>
<td>-0.008</td>
<td>-0.008</td>
<td>-0.006</td>
<td>-0.006</td>
<td>0.974</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.007</td>
<td>0.007</td>
<td>0.976</td>
</tr>
<tr>
<td>Limit case(s):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.976</td>
</tr>
</tbody>
</table>

Table 6: Partials of length L_i wrt tilt θ_{φ_n}

\[
\frac{\partial L_i}{\partial \theta_{\varphi_n}} \quad \text{(inch/degree)}
\]

<table>
<thead>
<tr>
<th>Point</th>
<th>L_1 Y1</th>
<th>L_2 Y2</th>
<th>L_3 Y3</th>
<th>L_4 X1</th>
<th>L_5 X2</th>
<th>L_6 Z1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>0.000</td>
<td>0.717</td>
<td>-0.717</td>
<td>-0.322</td>
<td>0.322</td>
<td>0.687</td>
</tr>
<tr>
<td>G-x-y-z</td>
<td>-0.040</td>
<td>0.742</td>
<td>-0.774</td>
<td>-0.288</td>
<td>0.271</td>
<td>0.784</td>
</tr>
<tr>
<td>G-x+y+z</td>
<td>0.040</td>
<td>0.774</td>
<td>-0.742</td>
<td>-0.271</td>
<td>0.288</td>
<td>0.758</td>
</tr>
<tr>
<td>G-x+y-z</td>
<td>-0.042</td>
<td>0.744</td>
<td>-0.778</td>
<td>-0.337</td>
<td>0.320</td>
<td>0.739</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>0.043</td>
<td>0.778</td>
<td>-0.743</td>
<td>-0.320</td>
<td>0.337</td>
<td>0.714</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>-0.040</td>
<td>0.654</td>
<td>-0.687</td>
<td>-0.323</td>
<td>0.309</td>
<td>0.636</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>0.040</td>
<td>0.687</td>
<td>-0.654</td>
<td>-0.309</td>
<td>0.324</td>
<td>0.626</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>-0.042</td>
<td>0.650</td>
<td>-0.685</td>
<td>-0.366</td>
<td>0.351</td>
<td>0.585</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>0.043</td>
<td>0.685</td>
<td>-0.650</td>
<td>-0.351</td>
<td>0.366</td>
<td>0.578</td>
</tr>
<tr>
<td>F-x-y-z</td>
<td>-0.007</td>
<td>0.750</td>
<td>-0.756</td>
<td>-0.158</td>
<td>0.154</td>
<td>0.836</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>0.007</td>
<td>0.756</td>
<td>-0.750</td>
<td>-0.154</td>
<td>0.158</td>
<td>0.833</td>
</tr>
<tr>
<td>F-x+y-z</td>
<td>-0.009</td>
<td>0.761</td>
<td>-0.768</td>
<td>-0.385</td>
<td>0.382</td>
<td>0.665</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>0.010</td>
<td>0.769</td>
<td>-0.761</td>
<td>-0.382</td>
<td>0.385</td>
<td>0.661</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>-0.007</td>
<td>0.675</td>
<td>-0.680</td>
<td>-0.209</td>
<td>0.206</td>
<td>0.714</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>0.007</td>
<td>0.680</td>
<td>-0.675</td>
<td>-0.206</td>
<td>0.209</td>
<td>0.713</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>-0.009</td>
<td>0.660</td>
<td>-0.668</td>
<td>-0.407</td>
<td>0.404</td>
<td>0.514</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>0.010</td>
<td>0.668</td>
<td>-0.660</td>
<td>-0.404</td>
<td>0.407</td>
<td>0.513</td>
</tr>
<tr>
<td>Limit case(s):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.836</td>
</tr>
</tbody>
</table>
Table 7: Partial of length L_i wrt tilt θ_y \[\left(\frac{\partial L_i}{\partial \theta_y} \right) \]

<table>
<thead>
<tr>
<th>Point</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>0.000</td>
<td>-0.003</td>
<td>0.003</td>
<td>0.860</td>
<td>-0.860</td>
<td>0.294</td>
</tr>
<tr>
<td>G-x-y-z</td>
<td>0.035</td>
<td>-0.095</td>
<td>0.058</td>
<td>0.822</td>
<td>-0.870</td>
<td>0.154</td>
</tr>
<tr>
<td>G-x-y+z</td>
<td>-0.035</td>
<td>-0.058</td>
<td>0.095</td>
<td>0.870</td>
<td>-0.822</td>
<td>0.176</td>
</tr>
<tr>
<td>G-x+y-z</td>
<td>0.037</td>
<td>-0.101</td>
<td>0.062</td>
<td>0.837</td>
<td>-0.885</td>
<td>0.161</td>
</tr>
<tr>
<td>G-x+y+z</td>
<td>-0.037</td>
<td>-0.062</td>
<td>0.101</td>
<td>0.885</td>
<td>-0.837</td>
<td>0.182</td>
</tr>
<tr>
<td>G+x-y-z</td>
<td>0.035</td>
<td>0.052</td>
<td>-0.089</td>
<td>0.837</td>
<td>-0.878</td>
<td>0.406</td>
</tr>
<tr>
<td>G+x-y+z</td>
<td>0.035</td>
<td>0.089</td>
<td>-0.052</td>
<td>0.878</td>
<td>-0.837</td>
<td>0.400</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>0.037</td>
<td>0.056</td>
<td>-0.095</td>
<td>0.848</td>
<td>-0.890</td>
<td>0.425</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>-0.037</td>
<td>0.095</td>
<td>-0.056</td>
<td>0.890</td>
<td>-0.848</td>
<td>0.415</td>
</tr>
<tr>
<td>F-x-y-z</td>
<td>0.006</td>
<td>-0.069</td>
<td>0.063</td>
<td>0.793</td>
<td>-0.802</td>
<td>0.141</td>
</tr>
<tr>
<td>F-x-y+z</td>
<td>0.066</td>
<td>0.063</td>
<td>0.069</td>
<td>0.802</td>
<td>-0.793</td>
<td>0.146</td>
</tr>
<tr>
<td>F-x+y-z</td>
<td>0.008</td>
<td>-0.093</td>
<td>0.084</td>
<td>0.870</td>
<td>-0.880</td>
<td>0.175</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>-0.008</td>
<td>0.084</td>
<td>0.093</td>
<td>0.880</td>
<td>-0.870</td>
<td>0.180</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>0.006</td>
<td>0.057</td>
<td>-0.064</td>
<td>0.816</td>
<td>-0.824</td>
<td>0.350</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>-0.006</td>
<td>0.064</td>
<td>-0.057</td>
<td>0.824</td>
<td>-0.816</td>
<td>0.351</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>0.008</td>
<td>0.077</td>
<td>-0.086</td>
<td>0.875</td>
<td>-0.884</td>
<td>0.434</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>-0.008</td>
<td>0.086</td>
<td>-0.077</td>
<td>0.884</td>
<td>-0.875</td>
<td>0.431</td>
</tr>
<tr>
<td>Limit case(s):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.890</td>
</tr>
</tbody>
</table>

Table 8: Partial of length L_i wrt tilt θ_z \[\left(\frac{\partial L_i}{\partial \theta_z} \right) \]

<table>
<thead>
<tr>
<th>Point</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>-0.991</td>
<td>0.530</td>
<td>0.530</td>
<td>-0.624</td>
<td>-0.624</td>
<td>0.122</td>
</tr>
<tr>
<td>G-x-y-z</td>
<td>-0.930</td>
<td>0.608</td>
<td>0.608</td>
<td>-0.577</td>
<td>-0.577</td>
<td>0.279</td>
</tr>
<tr>
<td>G-x-y+z</td>
<td>-0.930</td>
<td>0.608</td>
<td>0.608</td>
<td>-0.577</td>
<td>-0.577</td>
<td>0.249</td>
</tr>
<tr>
<td>G-x+y-z</td>
<td>-0.926</td>
<td>0.613</td>
<td>0.613</td>
<td>-0.631</td>
<td>-0.631</td>
<td>0.251</td>
</tr>
<tr>
<td>G-x+y+z</td>
<td>-0.926</td>
<td>0.613</td>
<td>0.613</td>
<td>-0.631</td>
<td>-0.631</td>
<td>0.222</td>
</tr>
<tr>
<td>G+x-y-z</td>
<td>-1.045</td>
<td>0.448</td>
<td>0.448</td>
<td>-0.617</td>
<td>-0.617</td>
<td>0.010</td>
</tr>
<tr>
<td>G+x+y-z</td>
<td>-1.045</td>
<td>0.448</td>
<td>0.448</td>
<td>-0.617</td>
<td>-0.617</td>
<td>0.009</td>
</tr>
<tr>
<td>G+x+y+z</td>
<td>-1.048</td>
<td>0.442</td>
<td>0.442</td>
<td>-0.663</td>
<td>-0.663</td>
<td>0.030</td>
</tr>
<tr>
<td>F-x-y-z</td>
<td>-0.941</td>
<td>0.597</td>
<td>0.597</td>
<td>-0.438</td>
<td>-0.438</td>
<td>0.315</td>
</tr>
<tr>
<td>F-x-y+z</td>
<td>-0.941</td>
<td>0.597</td>
<td>0.597</td>
<td>-0.438</td>
<td>-0.438</td>
<td>0.310</td>
</tr>
<tr>
<td>F-x+y-z</td>
<td>-0.920</td>
<td>0.620</td>
<td>0.620</td>
<td>-0.690</td>
<td>-0.690</td>
<td>0.202</td>
</tr>
<tr>
<td>F-x+y+z</td>
<td>-0.920</td>
<td>0.620</td>
<td>0.620</td>
<td>-0.690</td>
<td>-0.690</td>
<td>0.197</td>
</tr>
<tr>
<td>F+x-y-z</td>
<td>-1.039</td>
<td>0.459</td>
<td>0.459</td>
<td>-0.497</td>
<td>-0.497</td>
<td>0.093</td>
</tr>
<tr>
<td>F+x+y-z</td>
<td>-1.039</td>
<td>0.459</td>
<td>0.459</td>
<td>-0.497</td>
<td>-0.497</td>
<td>0.091</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>-1.052</td>
<td>0.436</td>
<td>0.436</td>
<td>-0.714</td>
<td>-0.714</td>
<td>0.074</td>
</tr>
<tr>
<td>F+x+y+z</td>
<td>-1.052</td>
<td>0.436</td>
<td>0.436</td>
<td>-0.714</td>
<td>-0.714</td>
<td>0.072</td>
</tr>
<tr>
<td>Limit case(s):</td>
<td>-1.052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Safety Considerations

In principle it is possible to command a combination of actuator lengths which will cause the mechanical parts of the system to bind or to collide with each other or with other elements of the telescope. Some combinations could bend one or more U-joints excessively, endangering the rubber seals. The design engineers studied these possibilities and their summary statement [Zai92, p.5] was: “There is no danger of exceeding hardware limits if the subreflector operates within its provided envelope and none of the ‘extreme deltas’ are exceeded.” These conclusions are implemented by a set of multi-level tests, both software and hardware, which are discussed in [Zai92].

A key concept is a set of six rules concerned with differences between actuator lengths. These rules appear in the last ten lines of code of `srDisplacementToLength()` (Section 2.1). The actuators have potentiometers which produce analog voltages proportional to encoder readings, and these are combined in operational amplifier and comparator circuits to provide an analog hardware implementation of these rules, with slightly looser limits than in the software. If these hardware limit detectors trigger, they disable the system and necessitate a manual reset. The PCD control software for the actuator servos also implements these rules in software, and inhibits motions when the rules are violated, which should prevent triggering the hardware limits.

The six length-difference rules are a necessary but not sufficient condition for the safety of the system: we must also limit displacement to combinations inside a specified box. In [Zai92] the corners of this box are specified as the eight points labelled “F±x±y±z” in Table 2.

Motions in Δz larger than ±0.83 inch may be desirable in order to move the beam between feedhorns separated by up to about 14 inches in the Gregorian focal plane while maintaining optimal imaging quality. Probably the best way to implement this will be to modify PCD’s firmware implementation so that it will permit displacements inside the box defined by the eight points labelled “G±s±y±z” in Table 2 in addition to permitting displacements inside the F±x±y±z box.
A srInclude.h

The error message macros which appear below are experimental—it is not yet clear whether they will be useful in the M&C implementation.

/* srInclude.h -- Include for the GBT's Gregorian subreflector
D.Wells, NRAO-CV
1996-02-14: new version of sr actuator include
1997-04-25: srInclude merges ellipsoid.h,greg_focus_track.h,greg_actuators.h
1997-05-21: eliminated enum gft_mode
1997-06-13: change made to test procedure for moving code to M&C
1997-07-23: added macro GET_SR_TILTS()
1998-01-15: removed focus tracking debug code & Schwab iteration macro */

/* srInclude.h -- Include for the GBT's Gregorian subreflector
D.Wells, NRAO-CV
1996-02-14: new version of sr actuator include
1997-04-25: srInclude merges ellipsoid.h,greg_focus_track.h,greg_actuators.h
1997-05-21: eliminated enum gft_mode
1997-06-13: change made to test procedure for moving code to M&C
1997-07-23: added macro GET_SR_TILTS()
1998-01-15: removed focus tracking debug code & Schwab iteration macro */

[GNU GPL copyright notice omitted]

#ifndef SR_INCLUDE_H
#define SR_INCLUDE_H
#include <math.h>
#include "smInclude.h"

#ifndef SR_INCLUDE_H
#define SR_INCLUDE_H
#include <math.h>
#include "srInclude.h"

/* -=- Macros to define actuator names and length-rule error messages: -=- */
#define SRL0 Y1
#define SRL1 Y2
#define SRL2 Y3
#define SRL3 X1
#define SRL4 X2
#define SRL5 Z1
#define SR_ACTUATORS_NAMES_N(A) #A
#define SR_ACTUATORS_ERRORS_M(A,B,C,D) A " " B " - " C " " D
#define SR_ACTUATORS_NAMES_A(A0,A1,A2,A3,A4,A5)
char *srActuatorsNames0 = {SR_ACTUATORS_NAMES_N(A0),
SR_ACTUATORS_NAMES_N(A1),
SR_ACTUATORS_NAMES_N(A2),
SR_ACTUATORS_NAMES_N(A3),
SR_ACTUATORS_NAMES_N(A4),
SR_ACTUATORS_NAMES_N(A5)}
#define SR_ACTUATORS_NAMES SR_ACTUATORS_NAMES_A(SRLO,SRL1,SRL2,SRL3,SRL4,SRL5)
#define SR_ACTUATORS_ERRORS_A(A0,A1,A2,A3,A4,A5)
struct srActuatorsErrorStruct {
 int bit;
 char *message;
} srActuatorsLengthErrors0 = {
 { 1, SR_ACTUATORS_ERRORS_M("abs", A0, A2, " > 2.60")},
 { 2, SR_ACTUATORS_ERRORS_M("abs", A0, A2, " > 2.60")},
 { 4, SR_ACTUATORS_ERRORS_M("abs", A1, A2, " > 2.62")},
 { 8, SR_ACTUATORS_ERRORS_M("abs", A3, A4, " > 1.40")},
 {16, SR_ACTUATORS_ERRORS_M("", A1, A5, " < 39.19")},
 {32, SR_ACTUATORS_ERRORS_M("", A1, A5, " > 62.98")}
};
const int NsrActuatorsErrors = (sizeof(srActuatorsLengthErrors) /
/ sizeof(struct srActuatorsErrorStruct))
#define SR_ACTUATORS_ERRORS SR_ACTUATORS_ERRORS_A(SRLO,SRL1,SRL2,SRL3,SRL4,SRL5)
/* -=-=-=-=-=-= Function Prototypes: -==-=-=-=-=-= */
#endif __cplusplus
extern "C" {
#endif /* endif cplusplus */

int srDisplacementToLength(
 double trans[3], /* delta translations (in) */
 double tilts[3], /* delta tilts (deg) */
 double temp, /* temperature (deg_C) */
 double encoder[6], /* output: lengths to use (in) */
 double apex_delta[3][6], /* U-joint errors(in) */
 double home_sub_delta[3][6]) /* U-joint errors(in) */
;
int srLengthToDisplacement(
 double len[6], /* input actuator lengths (in) */
 double temp, /* temperature (deg_C) */
 double trans[3], /* delta translations (in) */
 double tilts[3], /* delta tilts (deg) */
 double apex_delta[3][6], /* U-joint error(in) */
 double home_sub_delta[3][6], /* U-joint error(in) */
 int *iter) /* N-R iterations */
;
double srActuatorsLengths(
 double actual, /* actual length of act j (in) */
 double temp) /* temperature (deg_C) */
;
void srEllipsoid(double s12, /* Separation=(F1F2-11m) (m) */
 double t, /* Axis-tilt (radians) */
 double dxyc[]) /* Center_offset (m) */
;
double srEllipsoidBestRms (
 double ds12) /* delta_separation=(F1F2-11m) (mm) */
;
int srFocusTracking (
 double elev, /* elevation (deg) */
 double temp, /* temperature (deg_C) */
 double F1_delta[3], /* first-focus offset (m) */
 double F2_delta[3], /* second-focus offset (m) */
 double sub_trans[], /* XYZ subrefl backup (in) */
 double sub_tilts[], /* xyz subrefl tilts (deg) */
 struct node_data
 greg_feed, / feed coords/tilts wrt BFP */
 double dL12, /* PFP->feed - 11m (m) */
 double *extra_tilt, /* extra tilt subrefl (rad) */
 double *delta_tilt, /* (rad) */
 double S[], /* subrefl optical vertex (in) */
 double E[]) /* Euler ang vertex tilt(rad) */
;
#endif __cplusplus
};
#endif /* endif cplusplus */
#endif /* SR_INCLUDE_H */

References

[KM93] Lee King and Greg Morris. Foci arrangement and coordinate systems for the GBT. GBT Drawing C35102M081, NRAO, December 1993. The first sheet of this set of five drawings schematically defines six different coordinate systems to be used in the GBT project. Sheets 2-5 define the algebraic relationships between these coordinate systems.

[Sch92] F. Schwab. Error sensitivity of the GBT subreflector positioning mechanism. GBT Memo 93, NRAO, November 1992. The memo addresses the question “What is the nature of the subreflector positioning errors that would result from imperfect behavior of the U-joints and ball screws of the subreflector positioning mechanism?”.

[Sri90] S. Srikanth. Axial focussing. GBT Memo 49, NRAO, April 1990. “..the axis along which the [subreflector is] to be moved (without the telescope beam shifting in the sky) for axial focussing and the amount of movement required [are] determined.; the axis of focussing is 36.73° from the axis of the.. main reflector.. [and] 24.4° from the secondary focus feed axis.”.

[Wel98] Don Wells. GBT subreflector motions and servo properties. GBT Memo 176, NRAO, January 1998. Five types of GBT subreflector motions needed for astronomical observations are discussed, and estimates of their amplitudes and frequencies are given. These estimates are translated into velocity and acceleration requirements, which are compared with the specifications of the existing servo implementation.

[WK95] Don Wells and Lee King. The GBT Tipping-Structure Model in C. GBT Memo 124, NRAO, March 1995. Abstract: The finite element model of the GBT tipping structure has been translated into executable code expressed in the C language, so that it can be used by the control software modules for the pointing, focus-tracking, quadrant detector, active-surface and laser-rangefinder subsystems of the GBT. We give a description of this C-code version of the tipping structure model and two examples of its application to practical problems. See ftp://fits.cv.nrao.edu/pub/GBT_dwells_doc.tar.gz for the current revision of this memo (124.3 as of 1997-06-23).

[Zai92] J. Zaine. Mechanical analysis S/R positioner. Loral GBT Technical Memo 46, Loral Western Development Labs, October 1992. This comprehensive report discusses operational, peak operational and survival loadings, required motor torques, lost motion (backlash) of the U-joints and possible structural interference and U-joint angle problems of the subreflector actuators. Portions of Loral Interoffice Memorandum 3WL110-DL-107, titled “NRAO 100m GBT Prime Focus Feed & Subreflector Positioner Gravity Correction Travel Requirements” are included as Appendix A (pp.A1-A13). The asymmetric structural model which was used enabled calculation of the required out-of-plane Zt translation ±0.83in.