Heterogenous Real-time Computing
and some other stuff

John Ford

GUPPI Team: Patrick Brandt, Ron Duplain,
Paul Demorest, Randy McCullough, Scott
Ransom, Jason Ray




Outline

Heterogenous Real-time Systems
Computer Architecture

GUPPI

GBT Spectrometer



Heterogeneous Computing Systems

A system made up of architecturally diverse user-
programmable computing units.

Typically a mixture of two or more of the
following:

Traditional RISC/CISC CPUs
Reconfigurable Computing Elements (RCE)
Graphical Processing Units (GPU)



Real-time Computing

A real-time computing system must operate while
meeting fixed deadlines for completion of
scheduled computations

Computations finished correctly but late are not
useful?

Two cases:

Soft real-time systems
Hard real-time systems

Real-time does not mean “really fast”!
But it is helpful!



Heterogeneous Real-time
Computing
Combines both ideas into one system
Note that many heterogenous systems are not
designed to be real-time systems:

SRC-{6,7}, Convey, CPU/GPU clusters, supercomputers

Building a heterogeneous system is more difficult
than building a homogenous system due to the
need to master multiple toolsets, computing
models, and hardware characteristics.

Add in the requirement for real-time response, and it
IS even more challenging.



Then Why Bother?

The data rates are too high for a general-purpose
machine

Use an FPGA preprocessor to operate on the raw
data streams for I/O management

Use a GPU to offload computations from the CPU for
CPU load management

A general purpose machine would demand too
much power

FPGA's and GPU's are more efficient at computations
that fit their abilities



Computer System Architecture

System interconnection heirarchy

/O — slowest, but still fast in today's systems

Networks (10-40 Gb/sec reasonably attainable)
Disk I/O (500 MB/sec streaming over single RAID)
CPU-GPU memory copying (8 GB/sec for x16 PCle gen 2)

Memory - Processor

Front-side bus
HyperTransport (51 GB/sec per link )
QuickPath Interconnect (25 GB/sec per link)



Computer System Architecture

Memory organization
Uniform Memory Access (UMA)

Older Intel Xeon systems

Non-Uniform Memory Access (NUMA)

AMD Opteron systems
Newer Intel systems



UMA Example
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HyperTransport NUMA Example
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QPI NUMA Example
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Computer Systems Architecture

Processor architectures

CPU

X86 64 — Intel and AMD
Everything else — IBM Power and Cell Broadband Engine

GPU
NVidia
AMD/ATI

Reconfigurable Computing Elements (FPGA-based
Processors)
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NVidia GPU Architecture
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econfigurable Computing Elements
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GUPPI Block Diagram
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GUPPI architecture:
~1 MHz PFB in FPGAs
Coherent dedisp in GPUs
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Complete GUPPI




GUPPI Signal Processing
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Coherent Dedispersion

Removes ISM dispersion (for
known DM) within a freq
channel.

FIR filter applied pre-detection
via FFT convolution; filter
length ~k to ~M-point.

Most current systems are

“software” based and handle
~100 MHz total BW.

GASP system @ GB 20



>10x improvement in BW!

Fully utilizes all GBT low-

freq receivers.
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New GBT Spectrometer

Son of GUPPI

Joint effort with UC Berkeley — NSF ATI project
16 IF inputs

8 dual-pol beams, or 16 single-pol beams
3 GS/s sampling rate @ 8 bits/sample

Can be ganged to achieve ~10 GHz
iInstantaneous bandwidth on 2 polarizations
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Spectrometer Data Rates

ADC to FPGA: 3GS/s * 16 Polns * 8 bits = 384
Gb/sec

FPGA to GPU: ~9 Gb/sec * 8 GPUs =72 Gb/s

Raw (mostly) Data Output Rate:

Maximum specified at 33 MB/s * 16 polns = 525
MB/s, or 15 TB/8 hours, or 1 PB every 66
hours.

Front-end (FPGA-GPU) hardware is capable of
~10x this rate...
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Summary of Required Observing
Modes

Table 2: GBT spectrometer modes specified per beam (2 1Fs)®

Number of Sub-band Number of Spectral Velocity Velocity [ntegration
sub-bands | Bandwidth® channels per | resolution range at | resolution tlme
per LI sub-band per [FF 90 GHz | at 90 GHz | minimum | maximum
{MHz) (KHz) | (kems™! )| (kms 1) (msec) (=sec)
Ubserving Mode ]

| L500° 1024 | 465 5000 4.9 0.5 (i)

| L OO0 2045 488 3333 .G 0.7 (i)

| S0 4096 1 95 2067 0.7 l.3 il

| a0 8192 il | 6335 0.2 2.5 il

| 400 | G384 24 1333 0.0 ] fil)

| 250 32768 7.6 833 0.03 L) fil)

| L 00 32768 3.1 333 (.01 L1 (i)

| ol 32768 l.5 LGE (0.005 L1 (i)

| 25 32768 0.5 83 (.00 ] 0

| L) 32768 0.3 33 (.001 [ () 6l

| 5 32768 (.15 |7 (. 0005 L) fil)

| | 32768 (.03 3 (.0001 L) fil)

Observing Mode 2

bl 30 4096 7.3 100 0.02 L) 60

3 15 4096 3.7 o) .01 L) fil)

5 1) 4096 2.4 a4 (1.008 L) fil)

8 D 4096 |.2 L7 (0.004 L) (i)

H | 4096 0.2 3 (0. 000 L) (i)

# These modes are implemented in each spectrometer that processes 2 1Fs from a beam.
“ In Observing Mode 1, bandwidths less than 1500 MHz should be centered hetween 150 MHz and 1350 MHz.
¢ The nsable bandwidth will be 1250 MHz, which corresponds to a velocity range of 4165 km s~ at 90 GHz.
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Conclusions

Using the heterogenous combination works.

FPGAs for the fastest streaming integer signal
processing tasks

GPUs for parallel floating point calculations

Use general-purpose CPUs for managing the
system, assembling and transmitting data, and
for parts of the computations that are not
amenable to the GPU
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IDIA Workshop

Workshop Summary
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IDIA Workshop

Actions

- Look into creating an engineering REU program
funded by CISE
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