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ABSTRACT 
 
         
          The 800Mhz IBOB/ADC based Spectrometer has been completed. This document 
presents an overview of the FPGA design, and give some brief descriptions [1] about 
configurations which allow the user to take advantage of all the features. We also present 
tests of the system with IF sources and explains the methods for using this design to send  
and receive data. My work was modifying the Nancay spectrometer, design to distribute 
channels to different IP addresses. A major change was adding a corner turner block. 
          We review features and limitations of the design and point out potential improvements 
 in future work. 
          
 

 

 

 

 

 

 

 

 

[1] The detailed configuration will be given in User’s Guide. 
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Introduction 
 

      This document describes the IBOB/ADC based, wideband spectrometer. The design 
“Guppi Spectrometer” (use GuppSpec for short) is based on Parkes Spectrometer and Nancay 
Pulsar Machine Spectrometer[1] by CASPER group and based on the IBOB hardware 
platform, it was built using the CASPER  Simulink toolflow and DSP libraries.  
      The GuppSpec design is a part of Wideband Coherent De-dispersion System. The 
features of the spectrometer are specified by Scott Ransom and Paul Demorest, it requires to 
distribute 800Mhz to several PC-clusters(CPU or GPU) and according to Paul’s experience, 
each computer may handle up to 50Mhz spectrum with 8 bit depth, so we get the design to 
meet this requirement.  
      Based on Nancay’s spectrometer which is a dual pol, 400Mhz, 128 channels design with 
two 10BbE IP out, the major change here was adding a corner turner block and give the multi 
IP address out. 
      This note will give a basic description about the whole spectrometer design. Merely 
enough detail is given to allow the user to take advantage of all the features and configuration 
options that are available. 

An Overview of FPGA design 
 

1. ADC and Sync Pulse Block 
  
        Based on Nancay Pulsar Machine Spectrometer 
design, the GuppiSpec requires a wider band as 
800Mhz, so in this mode of sampling, we set XSG 
core to adc0_clk still, and set the ADC sampling clock 
rate to 800 in the ADC yellow block and select ADC 
interleave mode. The clock physically connect to the 
ADC board is a single 800MHz, the interleaved 
clocking with phase delay will be handled internally by 
the ADC chip. 
      The output of data is 8 bits wide, we add 1 clk 
delay in order to meet the timing constrain during the 
compiling. To Randy McCullough’s suggestion, we set 
outofrange port to a LED, so that when samples are 
outside the valid range we may easily change the 
power range according to the LED’s on/off                             Fig 1. ADC and Sync Pulse block. 
and brightness.    
     As Henry Chen’s sync pulse memo[2] describes,  we need to setup this pulse to aid in 
 
[1]. http://casper.berkeley.edu/wiki/index.php/Nancay_CoDeDi_Pulsar_Machine 
[2]. http://casper.berkeley.edu/memos/sync_memo_v1.pdf 

https://safe.nrao.edu/wiki/bin/view/Main/RandyMcCullough
http://casper.berkeley.edu/wiki/index.php/Nancay_CoDeDi_Pulsar_Machine
http://casper.berkeley.edu/memos/sync_memo_v1.pdf


managing the data stream and get rid of some initialization period and valid data. The formula 
to calculate this sync period is as follows:  
                 Minimum Sync period = LCM(reorder orders)*FFT-Size/Simultaneous-inputs 
    Use this formula in the design, reorder orders in FFT is 2, corner turner’s reorder 
order is also 2(dual buffer mode is active, else the reorder order will up to 11), FFT 
size is 2^8=256, taps in PFB is 2, simultaneous-inputs is 8. So the sync period will be 
n*2*2*2*256/8=256, we set 2048 as initialization. 
 

2. PFB-FFT, Scaling and Bit-select Block. 
 

     The FFT can be viewed as a filter and if given an 
input to a FFT response, the output will include 
subband leakage in the spectrum[1], so a PFB is 
added to change the response, this is the basic part 
for almost all spectrometer. In the design, ADC has 8 
Simultaneous outputs, so we setup both PFB and FFT 
to this number, we have considered to use two 
separated PFB-FFT block, each handles 4 outputs 
data instead of a big PFB-FFT block to handle  the 
whole 8 outputs, the compared result shows that the 
resources they cost are almost the same but the                         Fig 2. Bit-select Block 
separated design have the timing constrain errors. In the 400Mhz, dual-pol design, separated 
design could past time constrains, so we consider this error may be the cause of ADC 
interleave mode setup. 
    The ADC samples data with 8-bits of precision, but in the FPGA design, this bit width is 
gradually increased to 18, which is the bit width of 
the data coming out of FFT. However, not all 18-
bits are outputted over the 10GbE connection – in 
the final stage, 8 out of the 18 bits are selected. 
This selection is user-controlled, but it is not 
arbitrary: the user must pick one of four bit 
selection options: bits 0-7, 4-11, 8-15 or 11-18. 
     The question about which 8 of the 18bits you 
select relies on several factors. The major 
consideration is that we typically want to select            
the most significant bits that are not zero (possibly                Fig 3. FFT output Scope block  
with some allowance for “room” for RFI), and which collection of 8 bits these most significant.  
 So the scope_output block will help to look into the output of FFT with bramdump command 
    
[1]. http://seti.berkeley.edu/galfa/signalproc/pfb.html 
[2]. http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node43.html 

http://seti.berkeley.edu/galfa/signalproc/pfb.html
http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node43.html


non-zero bits will be in depends primarily on: a. input signal power and b. the scaling 
parameter. in TinyShell  of  IBOB, one could setup the parameter according this scope output. 
This feature is not normally used but is very valuable during the development. 
 

3. Corner Turner Block 
 

      Corner Turner block is designed to meet the output requirement of distributing the data 
to16 IPs. It reorders the data flow, so that each IP could get the same spectrum. The corner 
turner block will buffer the data and output the same 8 channels to one IP. The data structure 
in the Corner Turner is as follow table. Each number in the table represent a 64 bit path, 
included 4 channles. 
       In order to get larger data packet size which John Ford suggested, we use a 4096*64 bits 
buffer size[2] (which may be the largest in the design with IBOB, for the larger number neither 
the Simulink nor the recourses could handle). In the design we setup the dual buffer 
parameter to 1.  

 Specturm 

No. 
Input direction (Write direction) 

Output 

Direction 

(Read 
direction) 

Forming 
Packet 

 

 

     1     0    1           2   3             4  5       6  7      • • •       30 31 

     2    32  33 34  35    36 37 38 39   • • •     62 63 

     3    64  65 66  67    68 69 70 71   • • •     94 95 

      • • •      • • • • • •       • • • 

   256 4064 4065 4066 4067        • • • 4094  4095 

10 GbeE Block Distribution 

     Destination 

          IPs IP1 IP2 • • • IP16 

 
Table 1. Corner Turner data structure. 

 
4. 10GbE Block 

 
       Following figure shows the design of 10GbE block. Delay the valid and data signals so  
 



that end-of-frame goes high for the last clock that valid is high[1]. This is a requirement for 
the 10GbE block to work. So we use tx_valid and tx_end_of_frame port to control the two 
10GBE blocks work alternately.  

 
Fig 4.  Logic for 10EbE and 8 IP distributer 

       
       In the mean time, to cooperate with Corner Turner block to generate the correct packet 
size, we set a 9-bit counter and every half time one 10GbE block will work to buffer the data 
and prepare the UDP packet. So every 256 clk we sent a different destination IP to tx_dest_ip 
port with tx_valid  on high and tx_end_of_frame on high at the last clock before tx_valid on 
low. The tx_dest_port will be set as UDP port and other port to leave default. 
       For the packet format, the spectrometer outputs UDP packets whose payloads have the 
following structure: 
 
                                                              Counter 
           P0(0)      P0(1)      P0(2)       P0(3)      P0(4)      P0(5)      P0(6)      P0(7) 
                                                                • • •                
          P256(0)   P256(1)    P256(2)    P256(3)    P256(4)   P256(5)    P256(6)   P256(7) 

 
Table 2   Data structure of the packet. 

      A single packet contains 8-channel spectrum. With the  9-bits wide counter, and all the 
remaining (data) entries are 8-bits wide. Thus the total size of a single packet payload is 2056 
bytes. Px(y) is the Voltage of y bin/channel of x spectrum. 
 
 

5. Timing using ARM and 1PPS 
 

      In order to get precise time-stamp of each spectrum, we cited this part of design from 
Nancay Pulsar Machine Spectrometer, the idea here is that it provides a means to reset the 
counter at a precisely known time, and add the counter number into the packet of the 
spectrum, so this enables the user to determine the time a spectrum arrived very accurately. 
 
[1]. http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node53.html 

http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node53.html


 
To let this block work, we need the control computer (the one connected to the IBOB via the 
100MbitE port) to set up to use NTP (Network Time Protocol [1]), so that its clock is accurate  
to within a few tens of milliseconds. Then toggle the reg_arm register to make IBOB 
synchronized.[2] 
 
 
 
   
 
      
 
 
 
 
 

 
 

 
Fig 5.  ARM and 1PPS Block 

 
 

6. Software configuration and Receiving 10GbE/1GbE Packets on the 
Data Recorder Computer 

 
6.1   IBOB Configuration 

 
     There are two main categories of system set up: 1). spectrometer data, 2). connectivity 
settings. All configuration of the design is done in TinyShell as a simple telnet terminal. 
     In spectrometer data setting, we need to set Sync Pulse initialization period, FFT bit shift 
and bit selection. 
     In connectivity settings, we need to set the sending IP address and port of the 10GbE 
interface/connection on the IBOB, and the destination IP address and port. We also need to 
inform the IBOB of the MAC addresses of both the sending and receiving interfaces. 
     For the detailed configuration, please look into the “User Guide-A 800MHz 128-channel,16 
IPs distributed Spectrometer”. 
 
 
      6.2 Receiving 10GbE/1GbE Packets on the Data Recorder Computer 
 
 
After connecting both the IBOB and PC to the Switch, we use Paul’s udp_recv program to get 
the test data from IBOB, and use a Matlab script to transform the binary data into decimal. 
 
 
[1]. http://en.wikipedia.org/wiki/Network_Time_Protocol. or here in NRAO we use Lazier clock. 
[2]. for more information, please visit  http://casper.berkeley.edu/wiki/index.php/Parspec. 

http://en.wikipedia.org/wiki/Network_Time_Protocol
http://casper.berkeley.edu/wiki/index.php/Parspec


The result can be seen in the following test. Another choice is to capture data with gulp [1] (a 
network capture program that stores packets in pcap format which Nancay Spectrometer 
used) and process it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        

 
 
 
 

Fig 6.   Use udp_recv to get the UDP packets from IBOB. 
                                  

 
Limitations of the Design and Future Work 

   
 Due to the restriction of numbers be entered in the blank of Simulink and the structure of 
reorder block, 4096 numbers is the largest one which this design can handle, this limit the 
packet size of data. We are considering two paths to generate larger packet: 
 

1. Looking into the reorder block, if we could enter the order sequence number directly 
into the Rom instead of using the Simulink Mask, we may have got larger number. 

2. To delay the tx_valid  and tx_end_of_frame signal of 10Gbe block which meet the 
largest buffer size of this block, so we may send 16 channels means 100Mhz of 
spectrum or more to one computer. This will need a new reorder sequence and related 
time delay, but worth trying. 
 

      We have 4 computers with graphic card in the Lab. So we will configure all 16 IPs to 4 IPs, 
this implementation will add the complexity of the receiving program such as re-arrange the 
order of spectrum.  
      We will work on this program, not only the receive part but also with graphic card FFT 
program in CUDA. To get the whole 800Mhz Pulsar Coherent de-dispersion system work. 
  

 
 
 

[1]. http://staff.washington.edu/corey/gulp 



A Simple Tune Test 
 
        Generate first 8 channels (0~50Mhz bandwidth with/without 26Mhz pulse in) data from 
IBOB to EAST. 2056 Bytes/packet with 20 packets, select 16384 (8 bit depth for both real and 
image) data out, calculate the power of the spectrum and plot in Matlab. The second row of 
graphics show the 4 packets data, 2056*4=8224 points. The pulse may be caused by the 
wrong bit-selection in certain part of signal or DC power.   
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        Figure1. With 26Mhz Pulse                                               Figure2. Without 26Mhz Pulse 
               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Matlab test code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear; 
fid = fopen('dong_test'); 
c= fread(fid,32768); 
e=c (16384:32768); 
for i=1:8192     
    f(i) = sqrt(e(2*i-1)^2+e(2*i)^2); 
end 
 for n=1:16 
    for m=1:512 
        g(n) = sum(f((m-1)*16+n))/512; 
   end 
end 
subplot(211),plot(f/16) 
subplot(212),plot(g) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 

Appendix A: Design Summary 

Design Summary 

 
Frequency channels:  128 (256 real samples per spectrum)  
Signal input:  5MHz -800MHz or 800MHz -1.6GHz (2nd Nyquist  zone) or 

1.6GHz -2.4GHz (3rd Nyquist  zone) -20dBm to -10dBm 
 (-15dBm nominal) 50Ω SMA  

Polyphase filter:  2 taps, Hamming window  

Output:  Test mode: 100Mbit Ethernet. 32-bits per spectral bin. 
Observing mode: 10Gbit Ethernet. 8-bits per spectral bin.  

Clock input:  800MHz, 0dBm to +4dBm, 50Ω SMA  
1PPS input:  0 to 3V pulse nominal (into 50) 2V minimum, 5V maximum. 

Optional.  
Power input:  5V, 7A  
Mechanical:  1x IBOB and 1x iADC board on a 6U, 8HP plate.  
Control and monitor:  Set up sync period. Set up IP addresses, ports, MAC 

addresses, and ARP table. Set scaling: 18-bits, binary point 
at 12. Set output bit selection. Set ARM (optional).  

 

 
 


