

 CICADA Note 10

Documentation of 800Mhz IBOB/ADC based
Spectrometer Design

Dongliang Liu, John Ford, Glen Langston

 NRAO Green Bank Jan 10, 2009

ABSTRACT

 The 800Mhz IBOB/ADC based Spectrometer has been completed. This document
presents an overview of the FPGA design, and give some brief descriptions [1] about
configurations which allow the user to take advantage of all the features. We also present
tests of the system with IF sources and explains the methods for using this design to send
and receive data. My work was modifying the Nancay spectrometer, design to distribute
channels to different IP addresses. A major change was adding a corner turner block.
 We review features and limitations of the design and point out potential improvements
 in future work.

[1] The detailed configuration will be given in User’s Guide.

Revision Date Author Sections/Pages Affected
 Remarks

1.0 2009-Feb-10 Dongliang Liu All
Initial version for the project close-out

Introduction

 This document describes the IBOB/ADC based, wideband spectrometer. The design
“Guppi Spectrometer” (use GuppSpec for short) is based on Parkes Spectrometer and Nancay
Pulsar Machine Spectrometer[1] by CASPER group and based on the IBOB hardware
platform, it was built using the CASPER Simulink toolflow and DSP libraries.
 The GuppSpec design is a part of Wideband Coherent De-dispersion System. The
features of the spectrometer are specified by Scott Ransom and Paul Demorest, it requires to
distribute 800Mhz to several PC-clusters(CPU or GPU) and according to Paul’s experience,
each computer may handle up to 50Mhz spectrum with 8 bit depth, so we get the design to
meet this requirement.
 Based on Nancay’s spectrometer which is a dual pol, 400Mhz, 128 channels design with
two 10BbE IP out, the major change here was adding a corner turner block and give the multi
IP address out.
 This note will give a basic description about the whole spectrometer design. Merely
enough detail is given to allow the user to take advantage of all the features and configuration
options that are available.

An Overview of FPGA design

1. ADC and Sync Pulse Block

 Based on Nancay Pulsar Machine Spectrometer
design, the GuppiSpec requires a wider band as
800Mhz, so in this mode of sampling, we set XSG
core to adc0_clk still, and set the ADC sampling clock
rate to 800 in the ADC yellow block and select ADC
interleave mode. The clock physically connect to the
ADC board is a single 800MHz, the interleaved
clocking with phase delay will be handled internally by
the ADC chip.
 The output of data is 8 bits wide, we add 1 clk
delay in order to meet the timing constrain during the
compiling. To Randy McCullough’s suggestion, we set
outofrange port to a LED, so that when samples are
outside the valid range we may easily change the
power range according to the LED’s on/off Fig 1. ADC and Sync Pulse block.
and brightness.
 As Henry Chen’s sync pulse memo[2] describes, we need to setup this pulse to aid in

[1]. http://casper.berkeley.edu/wiki/index.php/Nancay_CoDeDi_Pulsar_Machine
[2]. http://casper.berkeley.edu/memos/sync_memo_v1.pdf

https://safe.nrao.edu/wiki/bin/view/Main/RandyMcCullough
http://casper.berkeley.edu/wiki/index.php/Nancay_CoDeDi_Pulsar_Machine
http://casper.berkeley.edu/memos/sync_memo_v1.pdf

managing the data stream and get rid of some initialization period and valid data. The formula
to calculate this sync period is as follows:
 Minimum Sync period = LCM(reorder orders)*FFT-Size/Simultaneous-inputs
 Use this formula in the design, reorder orders in FFT is 2, corner turner’s reorder
order is also 2(dual buffer mode is active, else the reorder order will up to 11), FFT
size is 2^8=256, taps in PFB is 2, simultaneous-inputs is 8. So the sync period will be
n*2*2*2*256/8=256, we set 2048 as initialization.

2. PFB-FFT, Scaling and Bit-select Block.

 The FFT can be viewed as a filter and if given an
input to a FFT response, the output will include
subband leakage in the spectrum[1], so a PFB is
added to change the response, this is the basic part
for almost all spectrometer. In the design, ADC has 8
Simultaneous outputs, so we setup both PFB and FFT
to this number, we have considered to use two
separated PFB-FFT block, each handles 4 outputs
data instead of a big PFB-FFT block to handle the
whole 8 outputs, the compared result shows that the
resources they cost are almost the same but the Fig 2. Bit-select Block
separated design have the timing constrain errors. In the 400Mhz, dual-pol design, separated
design could past time constrains, so we consider this error may be the cause of ADC
interleave mode setup.
 The ADC samples data with 8-bits of precision, but in the FPGA design, this bit width is
gradually increased to 18, which is the bit width of
the data coming out of FFT. However, not all 18-
bits are outputted over the 10GbE connection – in
the final stage, 8 out of the 18 bits are selected.
This selection is user-controlled, but it is not
arbitrary: the user must pick one of four bit
selection options: bits 0-7, 4-11, 8-15 or 11-18.
 The question about which 8 of the 18bits you
select relies on several factors. The major
consideration is that we typically want to select
the most significant bits that are not zero (possibly Fig 3. FFT output Scope block
with some allowance for “room” for RFI), and which collection of 8 bits these most significant.
 So the scope_output block will help to look into the output of FFT with bramdump command

[1]. http://seti.berkeley.edu/galfa/signalproc/pfb.html
[2]. http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node43.html

http://seti.berkeley.edu/galfa/signalproc/pfb.html
http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node43.html

non-zero bits will be in depends primarily on: a. input signal power and b. the scaling
parameter. in TinyShell of IBOB, one could setup the parameter according this scope output.
This feature is not normally used but is very valuable during the development.

3. Corner Turner Block

 Corner Turner block is designed to meet the output requirement of distributing the data
to16 IPs. It reorders the data flow, so that each IP could get the same spectrum. The corner
turner block will buffer the data and output the same 8 channels to one IP. The data structure
in the Corner Turner is as follow table. Each number in the table represent a 64 bit path,
included 4 channles.
 In order to get larger data packet size which John Ford suggested, we use a 4096*64 bits
buffer size[2] (which may be the largest in the design with IBOB, for the larger number neither
the Simulink nor the recourses could handle). In the design we setup the dual buffer
parameter to 1.

 Specturm

No.
Input direction (Write direction)

Output

Direction

(Read
direction)

Forming
Packet

 1 0 1 2 3 4 5 6 7 • • • 30 31

 2 32 33 34 35 36 37 38 39 • • • 62 63

 3 64 65 66 67 68 69 70 71 • • • 94 95

 • • • • • • • • • • • •

 256 4064 4065 4066 4067 • • • 4094 4095

10 GbeE Block Distribution

 Destination

 IPs IP1 IP2 • • • IP16

Table 1. Corner Turner data structure.

4. 10GbE Block

 Following figure shows the design of 10GbE block. Delay the valid and data signals so

that end-of-frame goes high for the last clock that valid is high[1]. This is a requirement for
the 10GbE block to work. So we use tx_valid and tx_end_of_frame port to control the two
10GBE blocks work alternately.

Fig 4. Logic for 10EbE and 8 IP distributer

 In the mean time, to cooperate with Corner Turner block to generate the correct packet
size, we set a 9-bit counter and every half time one 10GbE block will work to buffer the data
and prepare the UDP packet. So every 256 clk we sent a different destination IP to tx_dest_ip
port with tx_valid on high and tx_end_of_frame on high at the last clock before tx_valid on
low. The tx_dest_port will be set as UDP port and other port to leave default.
 For the packet format, the spectrometer outputs UDP packets whose payloads have the
following structure:

 Counter
 P0(0) P0(1) P0(2) P0(3) P0(4) P0(5) P0(6) P0(7)
 • • •
 P256(0) P256(1) P256(2) P256(3) P256(4) P256(5) P256(6) P256(7)

Table 2 Data structure of the packet.

 A single packet contains 8-channel spectrum. With the 9-bits wide counter, and all the
remaining (data) entries are 8-bits wide. Thus the total size of a single packet payload is 2056
bytes. Px(y) is the Voltage of y bin/channel of x spectrum.

5. Timing using ARM and 1PPS

 In order to get precise time-stamp of each spectrum, we cited this part of design from
Nancay Pulsar Machine Spectrometer, the idea here is that it provides a means to reset the
counter at a precisely known time, and add the counter number into the packet of the
spectrum, so this enables the user to determine the time a spectrum arrived very accurately.

[1]. http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node53.html

http://casper.berkeley.edu/doc/mlib_devel_7_1/doc/html/node53.html

To let this block work, we need the control computer (the one connected to the IBOB via the
100MbitE port) to set up to use NTP (Network Time Protocol [1]), so that its clock is accurate
to within a few tens of milliseconds. Then toggle the reg_arm register to make IBOB
synchronized.[2]

Fig 5. ARM and 1PPS Block

6. Software configuration and Receiving 10GbE/1GbE Packets on the
Data Recorder Computer

6.1 IBOB Configuration

 There are two main categories of system set up: 1). spectrometer data, 2). connectivity
settings. All configuration of the design is done in TinyShell as a simple telnet terminal.
 In spectrometer data setting, we need to set Sync Pulse initialization period, FFT bit shift
and bit selection.
 In connectivity settings, we need to set the sending IP address and port of the 10GbE
interface/connection on the IBOB, and the destination IP address and port. We also need to
inform the IBOB of the MAC addresses of both the sending and receiving interfaces.
 For the detailed configuration, please look into the “User Guide-A 800MHz 128-channel,16
IPs distributed Spectrometer”.

 6.2 Receiving 10GbE/1GbE Packets on the Data Recorder Computer

After connecting both the IBOB and PC to the Switch, we use Paul’s udp_recv program to get
the test data from IBOB, and use a Matlab script to transform the binary data into decimal.

[1]. http://en.wikipedia.org/wiki/Network_Time_Protocol. or here in NRAO we use Lazier clock.
[2]. for more information, please visit http://casper.berkeley.edu/wiki/index.php/Parspec.

http://en.wikipedia.org/wiki/Network_Time_Protocol
http://casper.berkeley.edu/wiki/index.php/Parspec

The result can be seen in the following test. Another choice is to capture data with gulp [1] (a
network capture program that stores packets in pcap format which Nancay Spectrometer
used) and process it.

Fig 6. Use udp_recv to get the UDP packets from IBOB.

Limitations of the Design and Future Work

 Due to the restriction of numbers be entered in the blank of Simulink and the structure of
reorder block, 4096 numbers is the largest one which this design can handle, this limit the
packet size of data. We are considering two paths to generate larger packet:

1. Looking into the reorder block, if we could enter the order sequence number directly
into the Rom instead of using the Simulink Mask, we may have got larger number.

2. To delay the tx_valid and tx_end_of_frame signal of 10Gbe block which meet the
largest buffer size of this block, so we may send 16 channels means 100Mhz of
spectrum or more to one computer. This will need a new reorder sequence and related
time delay, but worth trying.

 We have 4 computers with graphic card in the Lab. So we will configure all 16 IPs to 4 IPs,
this implementation will add the complexity of the receiving program such as re-arrange the
order of spectrum.
 We will work on this program, not only the receive part but also with graphic card FFT
program in CUDA. To get the whole 800Mhz Pulsar Coherent de-dispersion system work.

[1]. http://staff.washington.edu/corey/gulp

A Simple Tune Test

 Generate first 8 channels (0~50Mhz bandwidth with/without 26Mhz pulse in) data from
IBOB to EAST. 2056 Bytes/packet with 20 packets, select 16384 (8 bit depth for both real and
image) data out, calculate the power of the spectrum and plot in Matlab. The second row of
graphics show the 4 packets data, 2056*4=8224 points. The pulse may be caused by the
wrong bit-selection in certain part of signal or DC power.

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

1500

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

1500

 Figure1. With 26Mhz Pulse Figure2. Without 26Mhz Pulse

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Matlab test code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;
fid = fopen('dong_test');
c= fread(fid,32768);
e=c (16384:32768);
for i=1:8192
 f(i) = sqrt(e(2*i-1)^2+e(2*i)^2);
end
 for n=1:16
 for m=1:512
 g(n) = sum(f((m-1)*16+n))/512;
 end
end
subplot(211),plot(f/16)
subplot(212),plot(g)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Appendix A: Design Summary

Design Summary

Frequency channels: 128 (256 real samples per spectrum)
Signal input: 5MHz -800MHz or 800MHz -1.6GHz (2nd Nyquist zone) or

1.6GHz -2.4GHz (3rd Nyquist zone) -20dBm to -10dBm
 (-15dBm nominal) 50Ω SMA

Polyphase filter: 2 taps, Hamming window

Output: Test mode: 100Mbit Ethernet. 32-bits per spectral bin.
Observing mode: 10Gbit Ethernet. 8-bits per spectral bin.

Clock input: 800MHz, 0dBm to +4dBm, 50Ω SMA
1PPS input: 0 to 3V pulse nominal (into 50) 2V minimum, 5V maximum.

Optional.
Power input: 5V, 7A
Mechanical: 1x IBOB and 1x iADC board on a 6U, 8HP plate.
Control and monitor: Set up sync period. Set up IP addresses, ports, MAC

addresses, and ARP table. Set scaling: 18-bits, binary point
at 12. Set output bit selection. Set ARM (optional).

