Advanced Multi-beam Spectrometer for the GBT: Specifications

D. Anish Roshi NRAO, Green Bank

Conceptual Design Review, NRAO, Green Bank; 31st January, 2011

Overview of the talk

- Science and calibration requirements
- Specifications
- Considerations for further development in the near future

1. General Considerations

- Primarily a spectral line system
 - Full polarization spectral line observations with single beam
 - Full polarization spectral line imaging with focal plane array

• General pulsar observing modes will not be supported in the project time scale

• Cross correlation between feeds for a focal plane array will not be supported

2. Science Considerations – KFPA

- KFPA available now, which has 7 beams
- **Specification:** need to process 7 + 1 spare beam; 8 dual polarized signals; Full Stokes measurement
- Specification: Design should be scalable for observing with larger array in the near future

A simple spectrometer configuration

(spec per spectrometer)

3. Science considerations: 1 Sub-band Obs Modes

• Maximum Bandwidth :

Extragalactic observations $\leq 3000 \text{ km s}^{-1}$ $\Rightarrow 900 \text{ MHz}$ at 90 GHz.

Converter Rack lower cutoff freq 150 MHz; 1050 MHz (min) digitized bandwidth to avoid further mixing etc

• Velocity resolution and velocity range

- Maser \sim 100 km s⁻¹ and $\Delta V \sim$ 0.01 km s⁻¹ \Rightarrow 555 KHz (1 MHz for dual Dicke) and 55 Hz at 1665 MHz
- Extragalactic CO obs: \sim 3000 km s⁻¹ and $\Delta V \sim$ 5 km s⁻¹ \Rightarrow 900 MHz and 1.5 MHz near 80 to 90 GHz
- 22 GHz H₂O maser: 5000 km s⁻¹ and 0.3 km s⁻¹ \Rightarrow 370 MHz and 22 KHz at 22 GHz

4. Specifications: 1 Sub-band Obs Modes

Number of	Sub-band	Number of	Spectral	Integ	ration	Priority
sub-bands	Bandwidth ^{b}	channels per	resolution	time		
per IF		sub-band per IF		minimum	maximum	
	(MHz)		(KHz)	(msec)	(sec)	
1	1500	1024	1465	0.5	60	1
1	1000	2048	488	0.7	60	
1	800	4096	195	1.3	60	
1	500	8192	61	2.5	60	
1	400	16384	24	5	60	
1	250	32768	7.6	10	60	
1	100	32768	3.1	10	60	
1	50	32768	1.5	10	60	
1	25	32768	0.8	10	60	
1	10	32768	0.3	10	60	3
1	5	32768	0.15	10	60	
1	1	32768	0.03	10	60	4

5. Science considerations: Multiple Sub-band Obs Modes

Number of Sub-bands, sub-band bandwidth and resolution:

- NH₃ at 22 GHz: about 8 lines within 900 MHz BW; Sub-band bandwidth: needed $\sim 100 \text{ km s}^{-1} \text{ x 2 for dual Dicke} \Rightarrow 14 \text{ MHz}$. Spectral resolution: $\sim 0.04 \text{ km s}^{-1} \Rightarrow 3 \text{ KHz}$; 4700 channels
- RRL : 20 to 30 transitions at low freq bands (< 1.4 GHz). Sub-band bandwidth: need ~ 500 km s⁻¹ x 2 for dual Dicke \Rightarrow 1 MHz at 340 MHz Spectral resolution: ~ 1 km s⁻¹ \Rightarrow 1 KHz; 100 channels
- Extragal RRL

6. Specifications: Multiple Sub-band Obs Modes

Number of	Sub-band	Number of	Spectral	Integr	ration	Priority
sub-bands	Bandwidth ^{b}	channels per	resolution	time		
per IF		sub-band per IF		minimum	maximum	
	(MHz)		(KHz)	(msec)	(sec)	
8	30	4096	7.3	10	60	
8	15	4096	3.7	10	60	2
8	10	4096	2.4	10	60	
8	5	4096	1.2	10	60	
8	1	4096	0.2	10	60	

Tunable any where within the digitized band with 10 KHz resolution.

7. Calibration considerations: Switching signal

- Need cal, frequency, nodding, blanking signal
- 1 to 6 switching states
- KFPA mapping needs 100 msec integration per position.

8. Specifications: Switching signal

Timing				
	'on' time a			Blanking time
	min	max	min	max
	(msec)	(msec)	(msec)	(msec)
Cal sw sig. ^b	25	500	0.5	50
Freq/Pos sw sig.	50	1000	2	1000
'Look ahead' sig.	min 0.1 sec; max 1 sec			
advance time				
Number of switching states		min 1; max 6		
Number of bits for Freq/Pos sw sig.		2		
Number of bits for	1			
Source for sw sig.	Internally generated & External			
Data Packetization		Switching states need to be encoded		

in the output data from the hardware.

9. Science considerations: Data Dumping

• Galactic center pulsar search: 0.5 msec integration (1024 channels, 32 bit spec, 0.5 msec ⇒ 15 MB/sec)

If pulsar detected; may need full stokes \Rightarrow 30 MB/sec

• Stellar cyclotron maser instability obs: 10 msec (32 K, 32 bit spec, 10 msec, full Stokes \Rightarrow 50 MB/sec)

Specification: Keeping near future development option – 100 MB/sec per spectrometer

10. **Technical considerations: Digitization**

- RFI power 10^3 to 10^4 Tsys Δf (= 12 KHz) Spur level when observed with 1 KHz resolution and 12 hrs integration < -89 dBc
- Difficult to achieve this in the project time scale; analog system may limit before the digitizer.
- Chosen the best available ADC card: 8 bit, 1.5 GHz, dual channel, 52 dB (SFDR and IMD).
- Isolation between IF and ADC channels: **Spec:** > 60 dB (from Polarization obs requirement) **Degraded spec:** > 35 dB; coupled power changes only by 1% over 1 hr

11. Specifications: HPC and Data storage

- Up to 6 states of integrated spectra to be formed from the data sent by ROACH in the various specified modes.
- GBT pipeline implementation: beam based calibration, Doppler tracking of subbands, imaging using 8 beam data.
- Record raw data in SDFITs (minimum spec), record FITS images

12. Specifications: Summary

Spectrometer output	self of IF1, self of IF2, cross of IF1 & IF2		
Spectral values	32 bit quantized		
Digitized bandwidth for each IF	$\geq 1050 \text{ MHz}$		
Isolation between IFs	≥ 60 dB		
(degraded spec)	$\geq 35 \text{ dB}$		
	The coupled power should not		
	vary by more than 1% in 1 hour		
Integration time in the hardware	0.5 msec to 2 sec		
SFDR & IMD	As specified by ADC 083000		
Spectral filter response	stop-band rejection $\geq 90 \text{ dB}$;		
	stop-band is channels $> \pm 1.0$ resolution unit		
	< 0.1 dB ripple within 3dB bandwidth		
Band reduction filter response	< 0.1 dB ripple within 3dB bandwidth		
	Aliased power < 20 dB of in-band power		
	Roll-off: 20 dB in 1% of the bandwidth		
Direct Digital Converter LO	> 16 bits, 10 KHz resolution		
HPC, Data Storage and Monitoring			
Data rate to disk	100 MB/sec per beam (2 IFs), full Stokes		
Integration time in the HPC	2 sec to 1 minute		
Processing pipelines	KFPA mapping, single beam (2 IFs) observation,		
	fast spectral dump to disk (see text for details)		
Data output format	FITS images for KFPA, SDFITS for other observations		
Monitoring	Optional display of the spectrum every 30 sec		

13. Specifications: Analog system and Sampling clock

Specifications per analog unit			
Anti-aliasing filter	Low pass filter with 3dB cutoff freq 1.5 GHz		
	stop-band rejection $> 20 \text{ dB}$		
	Roll-off: 20 dB per 100 MHz		
	< 0.1 dB ripple within the 3dB bandwidth		
Analog input power level	+2 dBm for full-scale of the 8 bit ADC		
	-40 dBm for 1 bit fluctuation		
Intermodulation; output IP3	> 31 dBm		
Specifications sampling clock distribution			
Clock freq	1.5 GHz		
Clock waveform	sine wave		
Ref input freq	10 MHz		
Ref waveform	sine wave		
Ref power	0 dBm		
Jitter at the ADC clock input port	$\leq 0.61 \text{ ps}$		
Jitter (degraded)	$\leq 3.1 \text{ ps}$		
Power at ADC clock input port	0 dBm		

14. Wide-band spectrometer for single beam obs

Combine the 8 spectrometers to process larger bandwidth.

- Total bandwidth 1.25 to 10 GHz
- Total number of sub-bands $-8 \times 8 = 64$
- Full pol obs; supporting all modes specified earlier.
- Different spectrometers need to operate in different modes.

15. Near future developments

- Data recording at 100 MB/sec
- HPC will have local disks and option for adding addition disk to increase data rate.
- Streaming one spectrometer output data to the remaining 7 to get higher data rate for any on-line processing or recording to local disk in HPC.
- GPU's in each HPC node for pulsar and RFI excision application.