Beginner’s Guide to Synthesizing Noisy Interferometer Data

Terminology:
e CASA = more precisely casapy, i.e. the CASA binaries with python user interface

e simdata task: can be run with parameter menu, i.e. inp simdata, go simdata. The task
actually consists of a python script task_simdata.py which calls the Simulator tool. You can
find that python script in your installation and read precisely what it does.

e Simulator tool, accessed from the user interface via sm, e.g.

CASA <> sm.openfromms(‘‘foobar.ms’’)

CASA <> sm.setnoise2(table=‘‘foobar.noise’’)
CASA <> sm.corrupt()

CASA <> sm.done()

As is typical in CASA, not all tool functionality or flexibility is available in the task.

e VisCal object: CASA is object-oriented C++ and python. Each term which can corrupt your
data is internally represented by a VisCal, e.g. the BJones VisCal deals with the bandpass
shape, both corrupting it, and for real data, correcting for it.

Radiative Transfer:
We’ll consider coherent detectors in a minute, i.e. the oscillatory and vector nature of the signal.
For now, just consider the specific intensity I, passing through the atmosphere along a path s,
with absorption coefficient o, cm™! and emissivity j, erg cm™3 s7! sy~ Hz7!.

dl, .

d—y =—ay,l, + v (1)

S

Making the usual substitutions for optical depth dr,=a,ds and source function S,=j,/a,, and
noting that in local thermodynamic equilibrium the source function is the Plank function at the
temperature at that point along the path B, (T atm (%)),

dl,
= —1I, + B,(Tk atm (2)) 2)
Ty

Next we use the Rayleigh-Jeans expressions

2kT 4 (v) 2k T utm
I, = T; B, = 2 3)

T4(v) has little to do with the radiation temperature of the source, which is not restricted to have
a thermal spectrum. It is more accurately a noise temperature. If one were to place a telescope
or feed and detector with small bandwidth Av above the atmosphere and measure power P,, one
could replace that whole system with a resistor at temperature T4 (), and measure the same power.
Similarly, the brightness temperature Ty, of the atmosphere at the observing frequency v is not
necessarily the actual kinetic temperature of the atmosphere T 4ty

Next we suppress the actual vertical temperature structure of the atmosphere, i.e. we pretend that
the source function is constant. CASA uses Juan Pardo’s ATM library to actually model the atmo-
sphere and calculate the vertically integrated opacity 7, and atmospheric brightness temperature

Totm- We do it correctly so you don’t have to worry about it. Note that 7, is a function of the
airmass A=sec(zenith angle). The measured noise temperature 7" is

T'(at telescope) = T3 (above atmosphere)e™ ™ + Ty (1 —e™ ™) (4)

Now there’s a telescope that is sensitive to the sky with spillover efficiency 75, and to the surround-
ings with efficiency 1 — 7;. The surroundings have ambient temperature Ty, (somtimes called

Tground)a 50
T = [The™ + Tutm(1 — € ™)) s + (1 = 15) Tamb (5)

The cosmic microwave background Tep g is always present (and we make the approximation that
it is coming from all directions equally, as is noise from the receiver Trx:

T = [Tie™™ + Tum(— e ™) ns + (1 = 05)Tamp + ¢ Toms + Trx (6)

TISTZ(T” +Toupe ™ + nsTatm(l - 677—”) + (1 - ns)Tamb +Trx (7)

= Ta+Ts (8)
Interferometry:

Now we have to consider the cross-correlation of two measured signals 77 and 75, which has two
components: one proportional to the harmonic mean of the autocorrelations of the two total signals,
T\ Ty = (Ta1+Ts1)(Taz+Ts2), i.e. the contribution from each telescope being independently noisy.
The second term is proportional to the harmonic mean of the cross-correlations, 141742, where
only the source signal contributes, since the noise from each antenna does not correlate. (See e.g.
Thompson, Moran, and Swenson).

It is frequently assumed that the system noise dominates the source signal (faint sources), so the
noise contribution to a measurement is v/7T51Ts2. When expressed in terms of the source flux
density, received below the atmosphere, for integration time At and bandwidth Av, only half of the
energy from an unpolarized source is received, so the conversion is

F(noise) = — 22X A0)
(noise) =
Nanerdiday/2AvAL Y 52

Since the different noise sources don’t correlate, we can write

VTs1Ts2 = Tsys =Tompe ™ + nsTatm(l - 677—”) + (1 - ns)Tamb + Trx (10)
where for two antennas with different airmasses A; and Ao,
Ty = Tu,zem'th(Al + AZ)/2 (11)

Sometimes it makes sense to express everything in the temperature scale above the atmosphere (77),
or to express noise flux density relative to the source flux density before atmospheric attenuation.
This amounts to multiplying the previous expression by exp(+7,):

44/2k107%
NaNemd1davV AvAL

This is the scale assumed for simulated data - Janskies above the atmosphere.

FE}(noise) = [Toym + NsTam (€™ — 1) + (1 — ns) Tampe™ + Trxe™] (12)

Coherent detection:

The signals are measured with phase and polarization direction. The atmosphere introduces a
phase delay at each antenna ¢1, ¢o, assumed independent of polarization, so the complex visibility
is corrupted by multiplying by exp(i(¢1 — ¢2)).

Implementation in CASA:

CASA (and most synthesis data software) is based on the Measurement Equation method of cali-
bration. Operations are performed on a complex visibility vector (e.g. two complex numbers, one
for each polarization). Each potential effect on the data (atmospheric phase noise, receiver gain,
etc) is modeled by multiplying the visibility vector by a matrix. (Or in the case of thermal noise,
adding a noise vector). So the B Jones matrix represents the bandpass shape, the G Jones matrix
time-dependent complex gain calibration, etc. The calibration of real data involves using redun-
dancy in the data or prior information to solve for the matrices, and then multiplying the real data
by the inverse of those matrices. CASA corrupts simulated data by inverting the process. “Perfect”
noise-free visibilities are calculated by Fourier-transforming the user’s model of the sky, and then
those are multiplied by synthesized calibration/corruption matrices. One can, within limitations of
the Meaurement Equation formalism (not all matrices commute), and whether we’ve implemented
all of them yet, do some of each - generate perfect synthetic visibilities, corrupt them with e.g. G
and T terms, then generate noise, correct the noise by the residual effects of calibration, e.g. errors
in bandpass calibration, and finally add that to the visibilities.

Since CASA is object-oriented, each calibration matrix is represented by a VisCal object. Each
VisCal is intended to encapsulate a different physical effect on the data. Note that the separation
between different effects may be inter-related, and not separable, so that although we claim to be
able to separately calibrate gain fluctuations shared by both polarizations from cross-polarization
effects, and the calibration machinery heuristically will succeed by doing it this way, real life may
be harder. This is important because simulated VisCals will correspond exactly to one physical
effect, which may not represent real life.

Each VisCal is stored in a cal table - if the user creates one with simdata or Simulator, they
can then use plotcal (and in the future plotms) to plot it. For example the plot of a TJones (see
below) would show the gain fluctuations with time as the atmospheric phase delay screen passes
over the array

e TOpac VisCal = attenuation by the troposphere exp(—7,).
* Currently not frequency dependent. Need to implement a frequency-dependent TfOpac
using the ATM model. (expected 3.0)

e TJones: can introduce atmospheric phase fluctuations either individually for each antenna,
or by blowing a 2d screen over the array at a specified windspeed. The user can create this
corruption with sm.settrop.

* Although it does use ATM to determine the phase as a function of frequency and pwv
fluctuation, this should happen as a TfJones VisCal rather than TJones. (expected 3.0)

* Better interpolation of the delay screen is a future improvement (expected 3.0patch)

* It would be desirable to attach this to simdata (probably 3.0patch)

e ANoise: additive random noise. Currently only scaled to 1/v/AtAv. The user adds thermal
noise with sm.setnoise2, or from simdata, which creates constant-amplitude noise with

ANoise, then scales it according to Tj,s using an MfMueller.
* still a few bugs, to be fixed for 3.0 and the scaling needs to be to be changed to a TfJones.

e DJones: a constant cross-polarization, user-accessed with sm.setleakage.

e GJones: fluctuations in complex receiver gain, independent for each telescope, accessible with
sm.setgain

*

e BJones: ** not yet implemented ** user-specified bandpass shape (probably 3.0patch)

e EPJones: ** not yet implemented ** pointing errors - Pointing errors can be calculated as

a time-dependent offset or fluctuation in the primary beam pattern. CASA’s treatment of
pointing errors is a long-term project of Sanjay’s.

e antenna-dependent feed position angle: ** not yet implemented ** This can be implemented

in CASA by varying the voltage pattern for each antenna. The internal specification of votlage
patterns is currently under development by Rob, and implementation of this in Simulator will
require consultation by George.

Appendix: sdsim and SimACohCalc:

Single-dish / total power simulation is done in CASA using the sdsim task. Since total power data
is often stored in a Measurement Set in the autocorrelation rows, and the CASA calibration mech-
anism currently does not act on those rows, we cannot yet use the same VisCal-based corruptions.
For thermal nose we use a different class called SimACohCalc.

This internal subtlety should cause only minimal differences in noise amplitude compared to
simdata used with mode = ‘‘tsys-manual’’ (SimACohCalc does not interface with the ATM
library). We use the same routine simutil.noisetemp() to determine the receiver temperature
and efficiencies, and the noise amplitude is calculated using the same formula 12, with one differ-
ence: the sky and ground temperatures Ty, and T, are assumed equal, so the equation simplifies
to:

44/2k10723

F*(noise) = T +
1/() nanchQ\/m[CMB s

Tatm(eTV - 775) + TRXeTV] (13)

