What the user sees:

‘®00 Reduction of am652.mssplit.raw

l || Reduction of am652.mssplitraw

« How the script works:
+ Measurement set summary

Flag data already known to be bad or
invalid. These stages flag data that are
known beforehand to be bad or
inappropriate for inclusion in the
reduction.

Bl sanorass lcan Lo 1 source] oTHER

2.5 T

S ————————————

« Flag autocorrelations
12624 rows flagged 20}

Calibrations and images before any
heuristics.

15}

« Initial bandpass calibration

« Initial gain / flux calibration

« Initial calibrator cleaned
integrated maps

« Initial target cleaned integrated
maps

Flag bad calibrator data. The 0.5
following stages flag bad data from the '
calibrator sources that might prevent
successful calibration solutions from
being calculated. The approach is to
look for gross errors first then examine 0.0
the finer detail.

FIELD_ID
—
o

T

« Flag calibrator baselines with
noisy amplitudes -0. 3\ 6“ «\‘ «\‘ ((\‘ S
« Flag calibrator baselines with Q Q' Q' Q' Q' Q'
noisy phases Q&“Q Q‘)“Q QG“Q 01“0 0%“0 @“0
5927 rows flagged .
« Flag antenna timestamps with bad Time (after start 03-Aug-2000)
amplitudes in calibrator data
864 rows flagged ‘
« Flag baseline timestamps with)
outlying amplitudes in calibrator

Aaoto

Antenna Positions:

% Find: (Q sewi) (_Next | Previous) (O Highlightall) [] Match case "

<« »(

What the user sees:

‘800

ID Reduction of am652.mssplit.raw > |

Reduction of am652.mssplit.raw

> | |) file:///Users/ri3e/casa/pipeline/testing/UT6/am652-results/html/AAAROOT.html rvic Google n

+ How the script works
« Measurement set summary

Flag data already known to be bad or
invalid. These stages flag data that are
known beforehand to be bad or
inappropriate for inclusion in the
reduction.

« Flag autocorrelations
12624 rows flagged

Calibrations and images before any
heuristics.

« Initial bandpass calibration

« Initial gain / flux calibration

« Initial calibrator cleaned
integrated maps

« Initial target cleaned integrated
maps

Flag bad calibrator data. The
following stages flag bad data from the
calibrator sources that might prevent
successful calibration solutions from
being calculated. The approach is to
look for gross errors first then examine
the finer detail.

« Flag calibrator baselines with
noisy amplitudes

« Flag calibrator baselines with
noisy phases
5927 rows flagged

« Flag antenna timestamps with bad
amplitudes in calibrator data
864 rows flagged

« Flag baseline timestamps with
outlying amplitudes in calibrator

Aoto

v

The script is laid out in a series of 'stages’, following a 'recipe' read in from a file. The idea is that as the reduction of a dataset moves through
the stages the bad data are gradually removed and the best methods for calibrating the data are found. In the final stages the cleaned images and
er data products are calculated.

Each 'stage’ is an assembly of items; a data 'view' that presents some aspect of the data, optionally a 'flagger' to flag the data based on the view
statistics, optionally a 'display' to show the view and any results of the flagging. The data 'view' can take a wide range of forms; for example, it
can be a reduction of part of the MS or a calibration solution for the MS or a calibrated and cleaned image.

Some stages are designed to simply show a 'view' of the dataset being reduced, others to search for and flag bad data, others still to test a range
of calibration methods and select the one that gives the best results. For stages that flag data the 'view' presents a simplified picture of the data
that is intended to highlight the error being looked for.

One question frequently asked by new users of the system is, "Where in the reduction are the calibrations calculated?'. The answer is that they
are calculated, in principle, when they are needed; if a stage needs a calibration then how it is to be calculated will have been specified in the
recipe, or be known as the result of an earlier stage. The calculation is performed using the data as it is flagged at this point in the reduction.
However, in practice this would be inefficient. For example, if a calibration using the same method had been calculated by an earlier stage,
since when none of the data used in its calculation has been flagged, then that calibration result should be re-used now. The script keeps track
of flagging changes and only re-calculates calibrations when necessary.

N
A

The description of many data 'views' includes a list of the casapy calls used to generate them. These show the detail of the calculation and
should, if re-run, produce identical results to those shown here.

In stages where elements of the data view have been flagged the relevant entries in html tables and links to view displays are coloured red.

% Find: (Q sewi) (Next | Previous) (O Highlightall) [] Match case ”

If you want to “run” the pipeline

[0o Reduction of am652.mssplit.raw
l D Reduction of am652.mssplitraw BB Author Query Results % "_‘— ‘

864 rows flagged

« Flag baseline timestamps with « Iterating through the calibration groups:
outlying amplitudes in calibrator o One SpW is selected from those in the group, on the basis of having a large bandwidth and few flagged data.
data o A phase-only G calibration is performed on the data for that SpW. This result is applied to all SpWs in the group to phase them
8 rows flagged up before calculating the bandpass calibration; because G derives from one SpW it will not destroy the relative phase offsets of
. . the other SpWs when applied to them.
Find the best bandpass calibration. o Iterating through the SpWs in the group:

The following stages determine the
noise and shape profiles across each
bandpass, then try possible ways of
calculating the bandpass calibration.
The method giving the flattest
calibrated result overall is selected.

= The 'phase-up' G calibration is applied.
= The bandpass calibration is calculated.

ters used are listed in the following tables; see 'Casapy Calls' for full details:

Solution Table

» Detect the bandpass edges

« Find best bandpass solution bandpass.am652.mssplit.raw.fm1-5

Flag data where the best bandpass - -
calibration d t k well. Cal Continuum Line " . . Phase-up | Phase-upt | Channel Reference
ration does not work we Grou SpW spw |Error? | Field ID Bicld Info SpW (sec) Flags | Antenna
« Flag baselines where best ; :
P— ['2007+404'] .
bandpass solution 1s no good . :
bandpass solution is no good Group 2 | None 0] None |[1] ('BANDPASS 0 60.0 None D26 1
- g ! y .
« Display the quality of the best GAIN")
bandpass solution Results for Component SpW
Flag data where the gain calibration
ity gain SpW | Caltype |Error? | C252BY
po Calls
. IS-‘lIgRg gain calibrations with bad 0 B None zasl?x
« Flag antennas where the median S,
phase jump between gain)
solutions is unusually high where:
Flag closure errors in the cleaned + 'Cal Group' is the name of the calibration group.
gain calibrator results. The closure « 'Caltype’ is the CASA type of the calibration solution; 'B' or BPOLY".
errors are viewed against baseline and « 'Casapy Calls' links to a list of the CASA tool calls used to calculate the results. -
time to highlight different error sources. « 'Channel Flags' gives the name of the stage that specifies the channels to be flagged, if necessary, during the calculation of the |4
A bandpass calibration. These channels are flagged before the phase-up 'G' calibration is performed (to improve S/N), and beforea v
___e Flae median eain calibrator ML = B))<f»

% Find: (Q sewi) (Next | Previous) (O Highlightall) [] Match case

If you want to “run” the pipeline

800

ID Reduction of am652.mssplitraw » |

Reduction of am652.mssplit.raw

864 rows flagged r

« Flag baseline timestamps with

outlying amplitudes in calibrator
data

8 rows flagged

Find the best bandpass calibration.
The following stages determine the
noise and shape profiles across each
bandpass, then try possible ways of
calculating the bandpass calibration. m
The method giving the flattest
calibrated result overall is selected.

« Detect the bandpass edges
« Find best bandpass solution

Flag data where the best bandpass
calibration does not work well.

« Flag baselines where best "
bandpass solution is no good

« Flag noisy channels

« Display the quality of the best
bandpass solution

Flag data where the gain calibration
is poor.

« Flag gain calibrations with bad
SNR

« Flag antennas where the median
phase jump between gain
solutions is unusually high

Flag closure errors in the cleaned

gain calibrator results. The closure

errors are viewed against baseline and

time to highlight different error sources. ~

__ Flae median eain calibrator v

Stage: Detect the bandpass edges

Setting flag state to 'Current’

MS already in flag state.

The bandpass calibration for this SpW was calculated as

part of calibration group Group 2, comprising SpWs [0].

Calculate phase-only G calibration of one SpW in calibration group. This
will be applied to each SpW to phase up the data, while preserving relative
phase shifts within the group.

The phase-up G calibration was calculated for SpW 0 because, among

the SpWs available, it has large bandwidth and low flagging.

The name of the reference antenna selected for phase-up G is 'S', ID 26.
Calculate phase-only G.

reset calibrater, select data

cb.reset(apply=True, solve=True)

cb.selectvis(spw=[0], field=[1])

arrange pre-applied calibrations

cb.setapply(type="GAINCURVE")

arrange the solution required and solve

cb.setsolve(type='G', t=60.0, combine='scan', apmode="P', table="bandpass.phaseup.groupGroup2.fm1-5', append=False, solnorm=False,
minsnr=0.0, minblperant=3, refant="5")

cb.solve()

#

Section to calculate bandpass cal for SpW 0

name of reference antenna used is '5', ID 26

initialise data columns

im.setjy(field=int(1), spw=int(0), fluxdensity=[1.0, 0.0, 0.0, 0.0], standard="Perley-Taylor99")
s=tb.query('FIELD_ID==1 && DATA_DESC_ID==0")

data_col=s.getcol('DATA")

s.putcol'CORRECTED_DATA', data_col)

reset calibrater, select data

cb.reset(apply=True, solve=True)

cb.selectvis(spw=[0], field=[1])

arrange pre-applied calibrations

cb.setapply(type="GAINCURVE")

cb.setapply(type='G', table='bandpass.phaseup.groupGroup2.fm1-5', spwmap=[0])

arrange the solution required and solve

cb.setsolve(type='B', t="inf', combine='scan’, apmode="AP’, table='bandpass.am652 .mssplit.raw.fm1-5', append=True, solnorm=True,
minsnr=0.0, minblperant=3, refant='5")

cb.solve()

«»r (&

% Find: (Q sewi

) (Next | Previous) (O Highlightall) [] Match case

N

Pipeline Implementation, Remy’s understanding (or lack thereof)

July 2011
_ |Bample |Whatitis |Whatitdoes
recipe alma_Id_recipe.py function calls a series of tasks
hreduce
task hif _bandpass.py function calls the reducer to do execute a stage,

controlled by a long string including
reduction stage and display

pipeline sfiReducer.py class parses the string, and calls

object operator.operate() and display.display()
operator bandpassEdgeFlagger.py class e.g. flagData (which doesn’t flag ©)
display sliceDisplay.py class reate html and matplots
view bandpassCalibration.py class w/ bookkeeping,

memory of call e.g. calibrator tool,
ms state write out CASA commands

operator is null (for everything but flagging), but
view::getdata() can contain a lot of actual operations, e.g. for bandpass
that’s where the bandpass actually gets calculated

Hif/TaskInterface/task_hif flagdata:

* define “stage” python dict operator="TaqlFlagger", view="baseData.Basedata"

* sfipipeline_object._doStage(stage, True)

hif/sfiReducer ::_doStage()

* save flag state

* parse/regex the string in dict stage, exec it to create redStage
* viewParameters = redStage.reduce(deit)

hif/reductionStage.py ::reduce()
* set stage name in view, and other bookkeeping

* flagParameters = self._dataOperator.operate(self._stageDescription,

self._view)
* flagMessage,colour,viewParameters = self._dataDisplay.display
(self._stageDescription, self._view, self._dataOperator)

here, the dataDisplay is not set when hif_flagdata
creates the taqlFlagger object, so _dataDisplay is
NoDisplay, but it still has to create an object and
call the display method

hif/noDisplay.py ::display

* dataView.calculate()

* self.writeBaseHTMLDescriptionHead(
* self.writeBaseHTMLDescriptionTail()

hif/baseData.py ::calculate
this method seems here just to get the data parameters

out of the dataView with a deep copy

hif/baseDisplay.py ::writeBaseHTMLDescriptionHead
here we finally write a description to CASAlogger and

also flag stats dataOperator.writeFlaggingReport()

_dataOperator is “TaqlFlagger”

hif/taqglFlagger ::operate()
* collect flags in a list e.g. for ant in antrage: flags[].append()
* dataView.setFlags(stageDescription, self._rules, vis, flags)

_dataView is “baseData”

hif/baseData ::setFlags()
* self._msFlagger|[vis].setFlags(stageDescription, rules, flags, apply)

_msFlagger is a dictionary of flagger objects, one per ms
when each _msFlagger is created, it reads all sorts of data
from the MS, like antenna diameters, refdir, etc

it also creates a FLAGGING_STATE subtable in the MS.

all that requires creating and d'ting several CASA tools.

hif/msFlagger ::setFlags()

* self._flagTable(flags, apply)

* pickle the flag dictionary and for now write it to the
COMMAND column of the FLAG_CMD sub-table.

hif/msFlagger ::_flagTable()

* flagger flagging is done using separate flagger runs for
each rule - inefficient

* self._flagger.setshadowflags() (etc)

(the start of) their ALMA recipe

o task_hif_flagdata:

o operator taglFlagger::operate()

o iterate flag commands and collect lists of flags to apply, call dataView::setFlags
o view baseData::setFlags()

o self._msFlagger[vis].setFlags()

o self._flagger.setshadowflags() etc [_flaggeris the CASA tool]

o display noDisplay::display(): dataView.calculate()
o baseData::calculate(): deepcopy view parameters to display class

o hif_delaycal:

o operator = null, so nothing happens until _display::display()

o bandpassCal = “bandpassCalibration, NoDisplay”

o view delayCalibration

o display sliceDisplay

o delayCalibration::getData

o bandpassCalibration::calculate() — if there’s one avail in bookKeeper then
just return it, else actually calculate, bpoly for each spw, bchan for spw grp
o read BP gain, calculate median phase jump per channel

o hif_findedgechan
o operator = BandpasskdgeFlagger
o ::operate(): dataView.getData()
o medianAndMad modifies the BandpassCalibration view, so
o bandpassCalibration::getData()
o calculate THREE bps flag states “current
o init scratchcols with setly
o apply vla gain and delay
o calc phase-only G
o calc bpolys for each spw in group
o calc bchan for group
o read cal tables directly and try to figure out SPW maps
o query caltables with TaQl query
o calculate amp, phase of gains in python,
o average poln’s in python if requested
o collect flagged chans from each method and store in the dataView for later
(doesn’t actually ever flag anything)
o view = MedianAndMAD(view=BandpassCalibration)
o display =sliceDisplay.SliceX()
oDisplay::display does another dataView::getData() — does that mean it calculates
all the stats etc _again_?

n u |H o

original” “stageEntry”

o hif_sfcalclean
o operator=null
o display=SkyDisplay
o view=CleanlmageV3 (bgCal=none, gainCal=none)
o getData()
o self.calculate()
o force calculation of a new BP and Gain (I think... at last a rewrapping
of them — unclear whether it uses existing one from a different stage)
o commands += Baselmage._fillData() for each image
o start up an ia and imager and regionmanager tool if not already started
o apply delay, bp, gain
o make taql to combine images
o selectvis
o set imaging weights
o get cell and imsize from advise()
o makeimage(psf), fitpsf,
o “pilot” mfs
o iterated masking with Amy’s heuristics (I think)
o skydisplay does the multiple panels

Their Full recipe for ALMA

* flagdata: autocorr, shadow

* delaycal (implicit BP with phaseup)

* findedgechan (implicit BP): “mark” 5% edges, but don’t flag, just exclude from plots later
» sfcalclean: (implicit BP with phaseup, gaincal) mfs image calibrators

* sfcalclean: (apply BP, gaincal) mfs image target

* flag cals raw 70 amplitudes (ampnoise_bim: baseline-based, chan and time medianed)

* flag cals raw 70 phases (phasenoise_bim: baseline-based, chan and time medianed)

* flag gain soln 70 amplitudes (ampgain_atim: ant-based, chan medianed, fn of time)

» flag cals raw 70 amplitudes (ampnoise_btim: baseline-based, chan medianed, fn of time)

» sfcalclean: (implicit new BP w/phaseup and gaincal) mfs image phasecals for each MS
» sfcalclean: (implicit new BP w/phaseup and gaincal) mfs image target for each MS

* sfcalclean: mfs image phasecal for combined MSs (not sure if BP,gain are combined

* sfcaldirty: mfs dirty image of target

* findcubelines (presumably, there’s an implicit dirty cube inversion here)

* sfcalclean: clean target cubes over chan ranges where there are lines

* sfcalclean: mfs target image of continuum chans

* contsub: clean target cubes with continuum subtracted

* findlines: extract spectra from target images

Our Recipe for ALMA:

* flagdata: autocorr, shadow

e Anlavimcal [imanlicis DD aith !‘\ Lin)

NC N
u\.luy\.‘pn \III HI wiL wi vviruri V Tuocwu

/
* findedgechan (implicit BP): 5% edges

acfanlalacm. [iianlinids DD PHE N P I T PPy Ry 1\ o~ fr :M—.n ~alilh vt A
Jrcailcicall \IIIIIJIILIL oI VVILII PIIGDCUP, SCIIIIL(JI’ o nri 05 cailnviIatltvil o
PRI S D AU SRR U . ¥ » SEPUUE Uy | WU U S]
icailcicall. \adapply pr, gatrical] irms 1miagc talrgci
* flag cals raw 70 amplitudes (ampnoise_bim: baseline-based, chan and time me dlaned)
. n"\f“ ﬁ"\l" M~ 7" If\L'\ -~ l L\ ﬂﬂﬂﬂﬂ :I"\ L\ 7 Y W} L\"\I‘f\l:lﬂf\ L\"\f"\ld HL“'\V\ -~ IJ hmf\ M’\ \
'IGS valo |GVV 79 Plla)ca \l\lllClJCIIUIJC NMITT. VAocCilirirc UGJCU’ CIIdInT adirrua Lirrrc r11i1Iceu ,

* flag gain soln 70 amplitudes (ampgain_atim: ant-based, chan medianed, fn of tlme)
» flag cals raw 70 amplitudes (ampnoise_btim: baseline-based, chan medianed, fn of time)

Explicit BP, show phaseup of BP and flag that gain soln

» sfcalclean: (implicit new BP w/phaseup and gaincal) mfs image phasecals for each MS
» sfcalclean: (implicit new BP w/phaseup and gaincal)l.niT4 image target for each MS

* sfcalclean: mfs image phasecal for combined,MSs\(ivot sure if BP,gain are combined

* sfcaldirty: mfs dirty image of target

* findcubelines (presumably, theke(®an implicit dirty cube inversion here)

* sfcalclean: clean targetycubes,ever chan ranges where there are lines

* sfcalclean: mfs target im&ge of continuum chans

* contsub: clean target cubes with continuum subtracted

* findlines: extract spectra from target images

Issues to consider

U Processing Design
O Can the concept of “regenerate calibrations and images on the fly
whenever flagging or other changes require them” result in a clear
reduction path?
(1 How can we make the recipe/stages more clearly show the reduction
path to the user?
Q Are the generated python scripts sufficient to give the user? (i.e. they’ll
NEVER “run the pipeline”)
O Is the design viable, especially can it be made efficient?
U inefficient steps include the creation/destruction of tools,
generation of python exec strings

L Tree-structure html output design
L How can it be made more readable? The actual steps clearer? (#N)
1 How can the user recreate some of the plots and diagnostic output?

(right now they are given the CASA tool flag/cal/etc commands, but not any
plotms or plotcal commands)

L Can a concise summary be generated simultaneously with the html.tgz?

