

Computing IPT

B.E. Glendenning (NRAO) J. Ibsen (JAO) G. Kosugi (NAOJ) E. Schmid (ESO)

J. Schwarz (ESO)

Outline

- Overall Status
- Software Development Organization
- Telescope Software (CSV)
- Observatory Software (DSO)
- "Top 10" Issues Software
- Human Computer Interface (HCI) Initiative

Overall Status

- CIPT software has enough features to support early science
 - Bands 3,6,7 & 9 CSV SB-based observing, DSO Integrated tests
- Performance, efficiency, and robustness improvements will be the focus in the coming year
 - Significant improvements in R8, especially in performance, for Archive, CASA, Control, Correlator
- Telescope software (CSV) has more schedule risk than Observatory software (DSO)
 - AIV only requires modest support; routine operations
- The Archive has been a particular concern in the past year, remedial actions have already produced marked improvement

Computing IPT Organization

- Trilateral IPT centrally coordinated contributions from each Executive
 - Close collaboration with JAO Computing Group will be combined in operations (Operations Software IPT)
 - New EU CIPT lead: Erich Schmid (ESO)
 - 15 development sites, 4 continents!
- Work divided into 15subsystems
 - Functional (10): Control software, Archive software, ...
 - Process (5): Management, Integration & Test, Common Software, …
 - Subsystems often split between sites, although with a center of mass

CIPT Releases

- Two releases per year (December 1 & June 1)
 - R8 = December 2010, R8.1 = June 2011
 - Deployed later than the release (e.g., R8 in January 2011)
 - In principle one major and one minor, in practice they are all major at this stage of the project
 - Usually one major patch per release => updates to users
 ~quarterly
 - Weekly iterations small bug fixes
 - Release procedure defined: CIPT integration & test, CIPT test period, user test period, punchlist correction, final deployment
- Release Planning
 - Participation by all internal stakeholders
 - Twice per year: at annual (!) CDR and 6 months later.

Telescope Software

- Software required for telescope operations (principally used by AIV & CSV at present)
 - Equipment monitor & control
 - Front-end archive (monitor points, observational data)
 - Operator interfaces
 - (Observing Tool Phase II)
 - (Manual data processing/ analysis (CASA))

- Dynamic & queued/ manual SB selection/ execution
- Online calibrations
- (items which are principally being used/tested by at present by AIV & CSV although they could be considered part of Observatory software)

Telescope Software: Current Status

- SB based observing (Observing Tool Phase II produced)
 - All bands, many spectral modes (~20 tested, more available)
 - "Single Field Interferometry" can have multiple single-pointing sources in one SB
- AIV support ~complete (holography, optical pointing, etc.)
- Initial Front-End Archive installation (18 machines) complete, repository for monitor, observational, and project data
 - Including data versioning procedures
- Full suite of online calibrations
 - WVR only applied offline at present (FP6 contribution)
- All observational data flagged/calibrated/imaged in CASA

Telescope Software: Selected R8/R8.1 developments

- Control/Correlator: Mosaicing, full correlator performance, flagging & blanking, Incremental writes, final procurement of antenna & correlator computers
 - New total power implementation in place
- Scheduling: New implementation in place; includes dynamic scheduling algorithm in online scheduler
- Online calibration: Improved atmosphere calibration (Tsys, sideband ratios)
- Improved user access to monitor & observational data, install Storage Area Network installed at OSF
- CASA:
 - Parallelization of key tasks in progress
 - Performance in general significantly improved
- ACA correlator: fringes, spectrum obtained (see next slide)

Integration of ACA Correlator

- ACA Correlator operated with real antennas at AOS under ALMA 7.1.1 software in November
 - Band 3
 - 3 antennas
 - Spectral Window: 31.25 MHz 512 ch (left), 2 GHz 512 ch (right)

Computing IPT

Observatory Software

- Software required by ALMA to interact with the observing community, optimize the observing process, and quality check what has been observed
 - Distributed science archive
 - Science Pipeline
 - Phase 1 & phase 2
 Observing Tool
 - TAC support

- Observing project tracking
- QA metrics extraction & tracking
- User Portal
- Data packaging & distribution
- Manual data processing/ analysis (CASA)

Observatory Software: Current Status

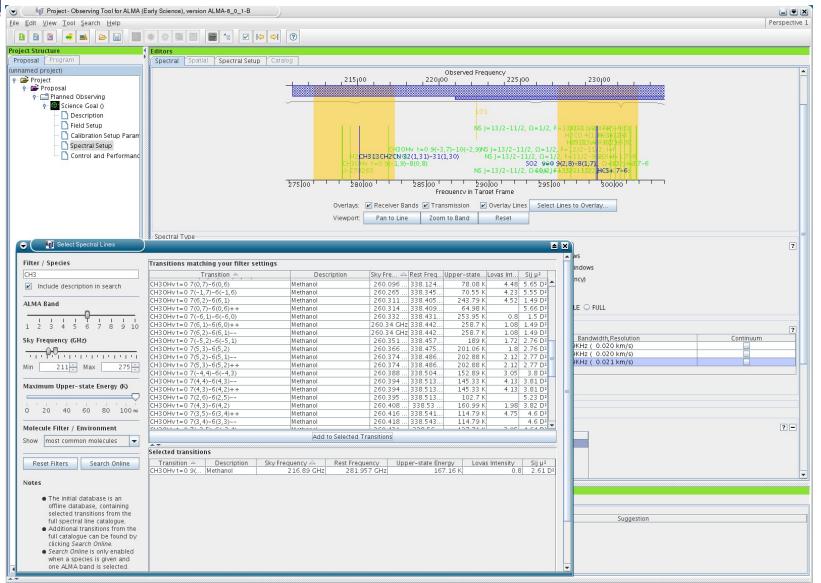
- 9 15 highest priority science archive queries implemented (42%)
- Archive data distribution mechanisms implemented (need SCO Archive for realistic testing)
- Science pipeline heuristics for single dish and interferometric observing (including pointed mosaics) implemented and tested on data from other telescopes
- CASA at general release 3.1; supporting EVLA (open to shared-risk observing since March 2010)

DSO's Integrated Test No. 3

- Currently underway
 - Phase 1 and Phase 2 Observing Tool very advanced undergoing final revisions for Cycle 0 CfP
 - Dynamic scheduling algorithm implemented in simulator
 - Phase 1 manager and Project Tracker ready for Early Science
- Submission test: 500 proposals ingested in 15 minutes
- Phase 2 preparation test in progress

Observatory Software: Selected R8/ R8.1 developments

- Installed Santiago archive
- Tested bulk data OSF-Santiago
 - Metadata, ARC distribution tests imminent
- Mosaics: R8 measurement of 87% on-source time (90% theoretical)
- Complete catalog support (including offline catalog in OT)
- Preliminary parallelization of pipeline processing
- Finish ACA 7m incorporation in Observing Tool (now partial)
- Inserted realistic/measured calibration overheads (from algorithms supplied by DSO) in Observing Tool
 - Systematic measurement campaign not currently planned
- Will implement Science pipeline processing directive flowthrough from Observing Tool for Cycle 1


Observing Tool Status

- Supports all Early Science cycle 0 modes
- Ephemeris support in place
- User-selection of Calibrators in a Science Goal possible
- 1-n single field positions on one target or pointed mosaic
- Includes calibration overheads in time estimates
- Users can only view projects they are investigators on.
- Galactic to J2000 coordinate transform possible
- More image servers in place (more suitable wavelengths, *e.g.* NVSS, SUMMS, IRAS...)
- Connection to Calibrator source catalog in Archive
- Production of Phase I SBs for APRC simulation (invisible to user)
- Improved help system

Computing IPT

"Spectral line picker" (I/F to Splatalogue)

"Top 10" Issues - Software

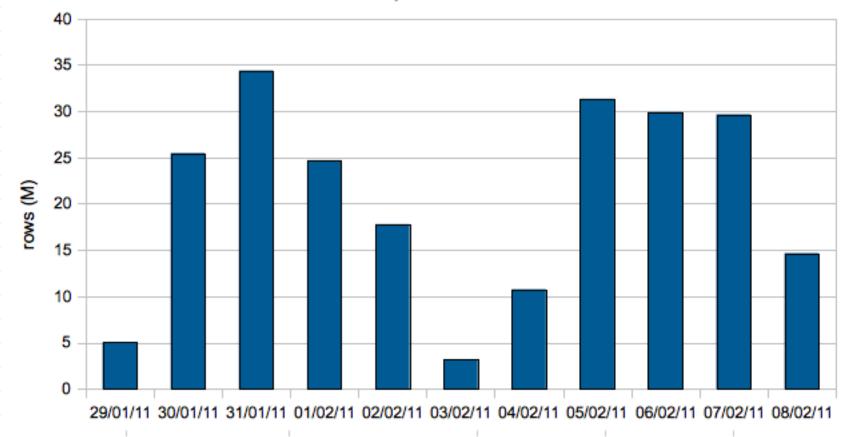
- System robustness: reliable startup (Priority=2)
 - Two aspects: restart sometimes has to be repeated, restart takes 30m
 - First aspect hard to reproduce
 - Startup reliable, restarting the computers takes ~10m, arranging GUIs and getting ready for observations takes 20+ minutes
 - Latter aspect receiving attention (e.g., automatically reopen GUIs)
- System robustness: tolerance to hardware failures (1)
 - Change from "stop on unexpected problem" to "flag data on unexpected problem"
 - Now flag rather than fail when antenna or subreflector not on source
 - Antenna flagging in R8 (worst problem), will add other sources in priority order (probably ACD & lock problems)
 - Special mission in early 2011

"Top 10" Issues – Software (2)

- Overheads are far too high (4)
 - Concentrate on delays internal to a SB initially
 - Inter-subscan delay: was 6s, then 3s, became 2.0s in R8
 - Pretune frequencies (25s -> 1.5s), R8.1
 - CIPT/CSV team setup to analyze delays in observing mode
 - First investigation astronomical holography: 70% on source time
 - Mosaics (87% on source time R8 (90% theoretical))
- Telescope Monitor and Control Database (2)
 - CIPT plan presented last Friday to SE, CSV, DSO
 - Software impact variable
 - Plan generally accepted, to be iterated/finalized by CDR9
 - Zenoss trending/display infrastructure developed by ADC
 - Go/no-go decision by CDR9 at the latest

"Top 10" Issues – Software (3)

- Shift log tool is not fit for purpose (4)
 - "this version is GREAT by the way, [some] improvements will be helpful but this version is a HUGE improvement from previously and is looking like a good tool that we are going to be able to use, so congratulations."
 - The additional improvements requested are in progress
- Control of focus and pointing offsets not complete (2)
 - Band-dependent focus and pointing offsets in R8, follow-on tip-tilt changes can probably be considered normal work
- Data rate limitations (2)
 - (Microwave link temporary issue) Fibre link in place (10 Gb/s)
 - Most non-real-time computers moved successfully from AOS to OSF
 - Data rates of ~ 18 MB/s routinely achieved (3 x specified average)
 - Often > 60 MB/s but still some sharp drops (under investigation)
 - Correlator Data Processor (16 computer cluster) performance
 - Was implemented as an end-to-end realtime system
 - Downstream hiccups stopped processing, made it hard to use all cores
 - First part of redesign/reimplementation completed in R8, More powerful computers (currently under test)

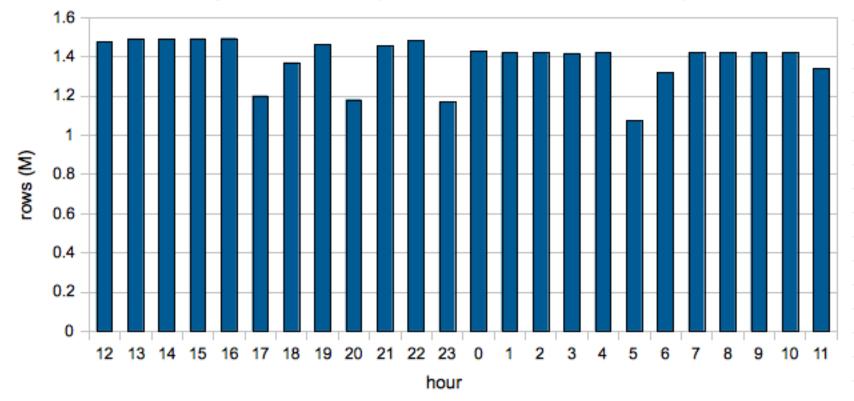


"Top 10" Issues - Archive

- Archive reliability; efficiency and ease of use of the Archive (2)
 - Reliability
 - Front-end Archive hardware / databases have excellent formal availability
 - In practice the Oracle part encountered occasional internal congestion which resulted in data dropouts and general sluggish performance
 - We very recently discovered a third-party library/Oracle version incompatibility that we believe is the cause of this problem
 - In addition we have purchased and will shortly install a Storage Area Network (SAN) installed and has which will greatly increased the Oracle throughput
 - The bulk data transmission software can cause crashes/hangups largely resolved

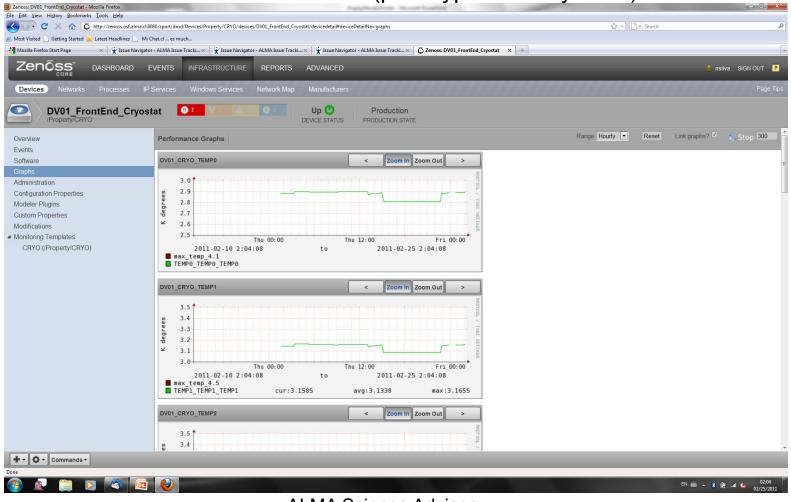
Archive Ingest of Monitor Data

Monitorpoint Volume



Computing IPT

ALMA Science Advisory Committee 28 February 2011


Hourly Breakdown

Hourly Breakdown (31-01 12:00 - 01-02 12:00)

Display Monitor Points w/Zenoss

Retrieve information from text files (prototype done by ADC)

"Top 10" Issues – Archive (2)

- Efficiency
 - We believe Oracle performance issues are now resolved
 - More indexing need to be enabled
 - Harvesting of **selected** XML attributes to relational fields underway
 - Bulk data archiving (NGAS part) at > peak data rate demonstrated in a standalone test environment
 - Cannot Have tested at ALMA with new fibre link yet (peak data rate ~500 Mb/s, microwave link is ~100 Mb/s (single duplex))
- Ease of Use
 - CSV uses command line tools, shared directories, and periodic dumps of monitor points into text files
 - We will install the science archive portal at the OSF
 - Common ("canned") queries not available
 - Multi-parameter queries to be delivered to CSV In May
 - CIPT staff totally consumed by front-end archive issues, "tiger team" (Ops/ARC staff) formed to implement queries (15 (of 36) highest priority queries implemented so far)
 - Low-level (SQL) access provided to nominated CSV members

CASA General Description

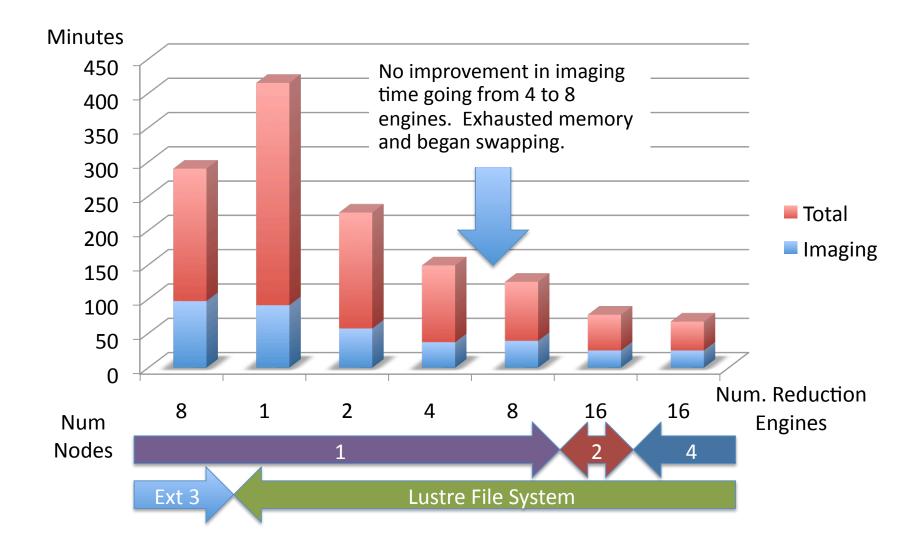
- CASA is the post-processing package for ALMA (and EVLA) both interferometric and single dish
- The ALMA pipeline is is being built from CASA toolkit
- Toolkit packaged into most commonly used *tasks* for users
- Designed with parallelization in mind
- Bypasses many of the "shortcuts" inherent in older packages (that were created to process much lower dynamic range data)
- Other details:
 - The algorithms are in C++; interface in python/ipython/Qt
 - Fully scriptable, with in-line help and scientist-written documentation (notably the user manual/cookbook)
 - Interferometric calibration and imaging capabilities implemented via the Hamaker, Bregman, Sault formalism (Measurement Equation)
 - Telescope data (visibility and single-dish) are stored in a Measurement Set (MS); a filler converts ALMA and EVLA raw data (SDM) to the MS

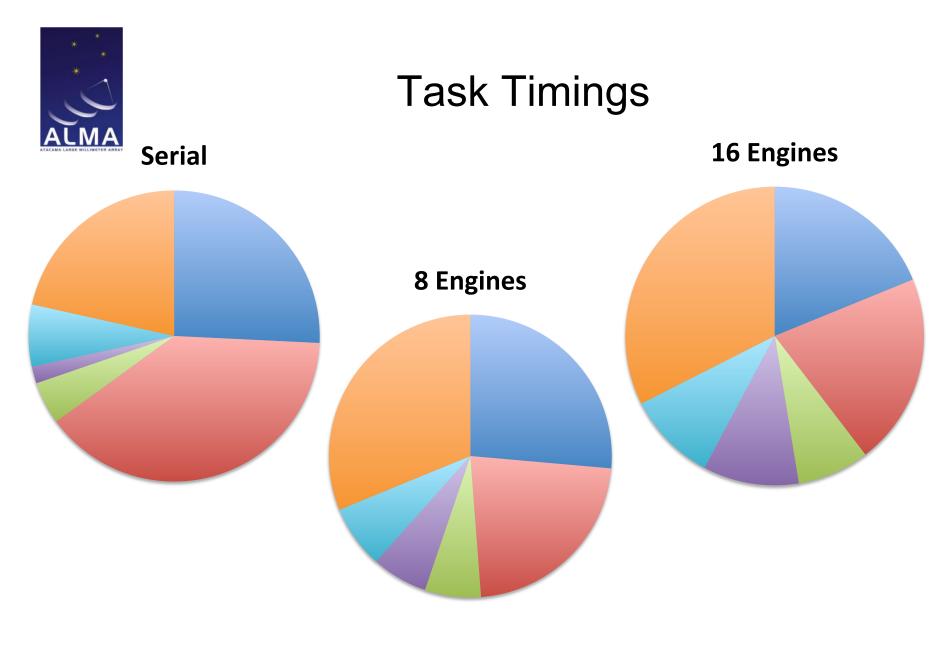
CASA Status

- MS Filler is in daily use by both ALMA and EVLA.
- CASA has addressed approximately 73% of the specified interferometric requirements.
 - 53% are deemed satisfactory
 - 20% although implemented, require enhancement.
- The core functionality needed to calibrate and reduce data from ALMA exists and is in use.
 - Improvements will simplify and improve the data reduction path.

Although there are some features which need development and improvement, currently the primary concern for CASA is performance.

CASA Performance

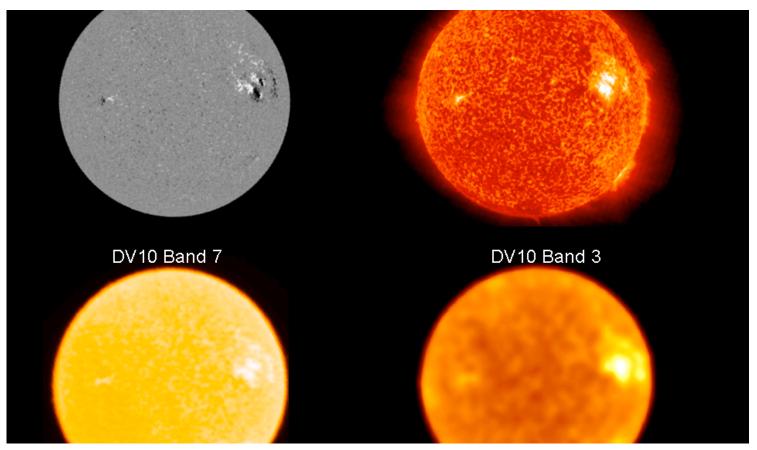

- Bugs (Fixed)
 - Improper configuration of storage manager causing each channel to be accessed separately (50x slowdown in Split)
 - Erroneous access pattern in split causing 10x data access
 - Consolidation of data access patterns will minimize the number of bugs.
- Optimizations
 - Development of Asynchronous-I/O methods
 - Removal of "Scratch" Columns to decrease I/O and disk consumption.
 - "Pipelined Processing"
- Parallelization
 - Our approach is the same for both clusters and workstations.
 - CASA 3.2 will have a filler to imager parallel pipeline (uses multiple cores)
 - *Restrictions: Continuum Only, Single SDM.*



CASA Timing and Parallelization

- We are currently working with the CSV staff to generate a representative (~100 GB) Early Science ALMA data set.
- Until that is available we are using an EVLA data set of comparable size (100 GB; 16x128 channels, dual polarization)
- Still a work in progress, we are still in the process of analyzing the timings, identifying bottlenecks and beginning to design solutions.

Reduction Time vs. Number of Engines



Split Flag ClearCal Cal Solve Apply Cal Imaging

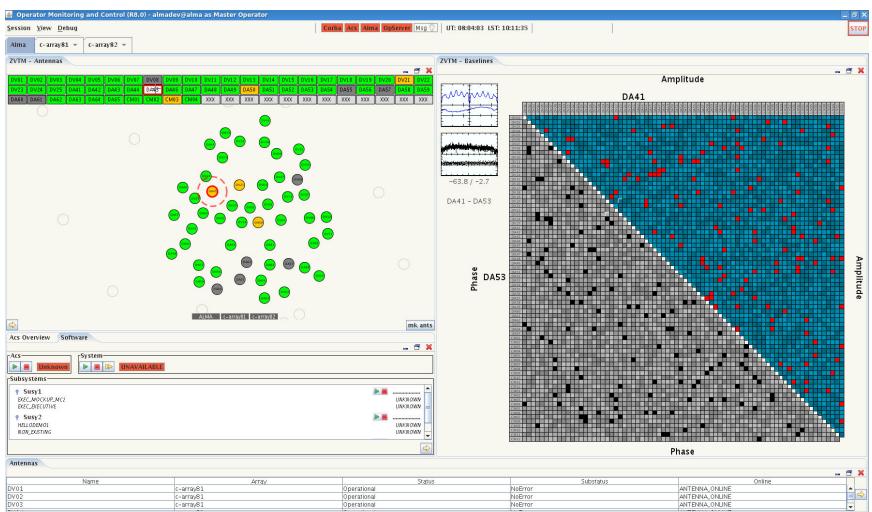
CASA Single Dish Sunspots & Solar prominences

From R. Hills, http://wikis.alma.cl/twiki/pub/AIV/MaterialsForTalksAndLectures/Sun_Test_Scans_Feb2011.ppt

CASA Single Dish

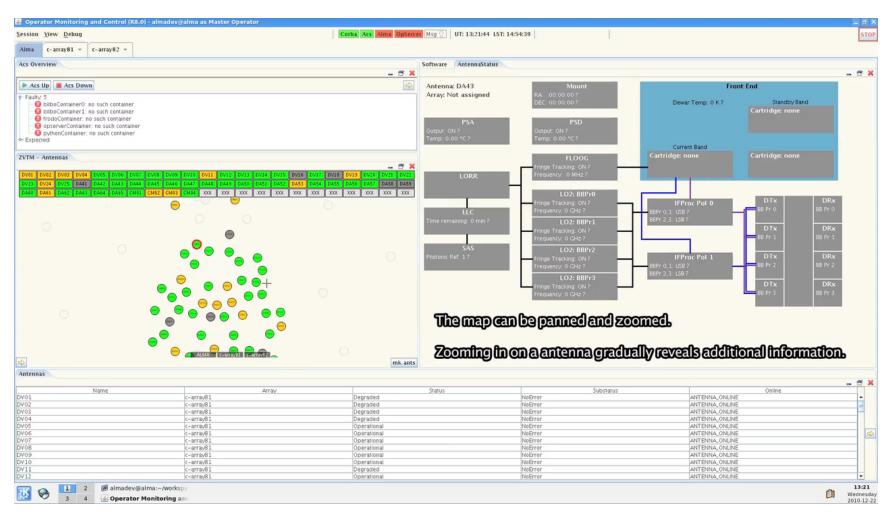
- Single Dish Capabilities are well advanced.
 - NAOJ deliverable to ALMA project
 - Single dish functionality is based on ATNF Spectral Analysis
 Software (ASAP)

Performance issues are being identified and corrected.



Human Computer Interface (HCI) Initiative

- Remaining action from the November 2008 JAO review of the CIPT: Get some expert HCI advice
- First workshop at OSF with HCI researchers/consultants from INRIA & CNAM, France
 - Included Operators, AIV/CSV/DSO Scientists, Nov 29 Dec 7
 - Produced first phase of new interface (next slide):
 - Geographical antenna map, semantic zoom: to be part of R8.1
 - Adjacency matrix to show status of ~2000 baselines in single window: projected for R9.0
- OT Progress
 - Observing Tool: Modest changes, to be incrementally accomplished with existing effort:
 - Steadily working on them, many in place, some not



New Antenna Map, Baseline I/F

Semantic Zoom

