Further Ahead

2012

- By the end of 2011 we need to have the Cycle 1 capabilities defined and characterized
- The goal for 2012 has to be to complete the commissioning of the full "Baseline ALMA".
- Note that this does not mean 66 antennas fully equipped – adding more antennas should become a straight-forward process – but we aim to demonstrate all the key capabilities by the end of 2012.
- The goal should be to have these in the Call for Proposals for Cycle 2.

"Inauguration" Capabilities

- 1. Regular operation with ≥ 50 fully-equipped¹ antennas. (This includes both 12m and 7m antennas.)
- 2. All antenna stations complete, providing synthesis mapping with high fidelity using the full set of array configurations.
- 3. Simultaneous operation of \geq 4 subarrays possible.
- Capability for combining data from the 12m array with data from the ACA including "zero-spacing" data, and multi-configuration images
- 5. Linear and circular polarization, including mosaicing of sources that are larger than the primary beam.
- 6. High time resolution observations, e.g. of solar flares.
- 7. All major software systems available² and working in a way that allows astronomers who are not synthesis experts to use ALMA³.
- 8. Accurate calibration of all the above⁴.

Footnotes

- 1. Fully-equipped means a minimum of four receiver bands typically bands 3, 6, 7, and 9 plus some of 4, 8 and 10, plus a <u>full</u> set of electronics, radiometers and calibration devices.
- 2. Some capabilities will still be under development at this stage e.g. on-the-fly aperture-synthesis mosaics, high-precision polarization maps of extended sources, and some of the less popular correlator modes.
- 3. At this stage ALMA staff will still be performing a lot of the data verification but the users will receive the images ready for analysis and interpretation.
- 4. The goals set for the calibration of ALMA data are very stringent and we may not achieve all of them by this point, but we must be doing a lot better than is currently achieved at these wavelengths.

Commentary

- Of these, I suspect that the simultaneous observing in several sub-arrays may be the most difficult to get working properly.
- There are numerous other technical items that will no doubt take a great deal of work to get right:
 - High dynamic range / fidelity images
 - Calibration accuracy
 - Astrometry i.e. milli-arcsec position accuracy (and below)
 - Efficiency, data quality, finding and fixing the rare glitches

Interface CSV to Operations

- CSV has certain specific deliverables:
 - 1. A telescope with defined observational capabilities, "verified" by observations of known objects
 - 2. Documented procedures for observing, calibrations and tests
 - Trained scientists who know how to use the system and understand it in some depth
- The interface between Commissioning and Operations is however not just that:
 - In order to achieve 3, the Operations team are heavily involved in commissioning
 - Conversely it is essential for morale, justice, etc., that the CSV scientists play a full part in the Early Science observations and data investigations, and that their work is visible outside Chile
 - Therefore continuing to run the science activities as a single team as far as possible – especially at the OSF.

Transition

- Activities that are essentially the same as CSV will continue throughout the life of the observatory:
 - Trouble-shooting
 - Trying out new techniques
 - Improving the quality, efficiency, reliability, etc.
- So the aim has to be that we make this a merging process, moving people and skills into the operations team at an optimum rate, rather than an abrupt transition.
- Tricky, but should be possible